[Home] [Server] [Queue] [About] [Remove] [Statistics]

I-TASSER results for job id S806317

(Click on S806317_results.tar.bz2 to download the tarball file including all modeling results listed on this page. Click on Annotation of I-TASSER Output to read the instructions for how to interpret the results on this page. Model results are kept on the server for 60 days, there is no way to retrieve the modeling data older than 2 months)

  Submitted Sequence in FASTA format

>protein
GSKTKEGVVHGVATVAEKTK

  Predicted Secondary Structure

Sequence                  20
                   |
GSKTKEGVVHGVATVAEKTK
PredictionCCCCCCCSSSSSSSSHHCCC
Conf.Score98653316554456400049
H:Helix; S:Strand; C:Coil

  Predicted Solvent Accessibility

Sequence                  20
                   |
GSKTKEGVVHGVATVAEKTK
Prediction86644431132133336648
Values range from 0 (buried residue) to 9 (highly exposed residue)

   Predicted normalized B-factor

(B-factor is a value to indicate the extent of the inherent thermal mobility of residues/atoms in proteins. In I-TASSER, this value is deduced from threading template proteins from the PDB in combination with the sequence profiles derived from sequence databases. The reported B-factor profile in the figure below corresponds to the normalized B-factor of the target protein, defined by B=(B'-u)/s, where B' is the raw B-factor value, u and s are respectively the mean and standard deviation of the raw B-factors along the sequence. Click here to read more about predicted normalized B-factor)


  Top 10 threading templates used by I-TASSER

(I-TASSER modeling starts from the structure templates identified by LOMETS from the PDB library. LOMETS is a meta-server threading approach containing multiple threading programs, where each threading program can generate tens of thousands of template alignments. I-TASSER only uses the templates of the highest significance in the threading alignments, the significance of which are measured by the Z-score, i.e. the difference between the raw and average scores in the unit of standard deviation. The templates in this section are the 10 best templates selected from the LOMETS threading programs. Usually, one template of the highest Z-score is selected from each threading program, where the threading programs are sorted by the average performance in the large-scale benchmark test experiments.)

Rank PDB
Hit
Iden1Iden2CovNorm.
Z-score
Download
Align.
                   20
                   |
Sec.Str
Seq
CCCCCCCSSSSSSSSHHCCC
GSKTKEGVVHGVATVAEKTK
11xq8A 1.00 1.00 1.00 1.35Download GSKTKEGVVHGVATVAEKTK
27ml0A 0.11 0.30 0.90 0.92Download GIDVAK--TEEKLRTYEELN
31xq8 1.00 1.00 1.00 2.41Download GSKTKEGVVHGVATVAEKTK
42jtmA 0.30 0.30 1.00 1.06Download APKGRKGVKIGLFKDPETGK
51xq8 1.00 1.00 0.95 2.59Download GSKTKEGVVHGVATVAEKT-
66osjA 1.00 1.00 1.00 0.88Download GSKTKEGVVHGVATVAEKTK
77ozgA 1.00 1.00 1.00 0.46Download GSKTKEGVVHGVATVAEKTK
83ulyB 0.36 0.25 0.70 1.57Download -TKNKDGVLFGLPQI-----
97l7hA 1.00 1.00 1.00 0.77Download GSKTKEGVVHGVATVAEKTK
101vw4N 0.35 0.50 1.00 0.75Download GHPINTSLYTLKATVVGKTK
(a)All the residues are colored in black; however, those residues in template which are identical to the residue in the query sequence are highlighted in color. Coloring scheme is based on the property of amino acids, where polar are brightly coloured while non-polar residues are colored in dark shade. (more about the colors used)
(b)Rank of templates represents the top ten threading templates used by I-TASSER.
(c)Ident1 is the percentage sequence identity of the templates in the threading aligned region with the query sequence.
(d)Ident2 is the percentage sequence identity of the whole template chains with query sequence.
(e)Cov represents the coverage of the threading alignment and is equal to the number of aligned residues divided by the length of query protein.
(f)Norm. Z-score is the normalized Z-score of the threading alignments. Alignment with a Normalized Z-score >1 mean a good alignment and vice versa.
(g)Download Align. provides the 3D structure of the aligned regions of the threading templates.
(h)The top 10 alignments reported above (in order of their ranking) are from the following threading programs:
       1: MUSTER   2: SPARKS-X   3: HHSEARCH2   4: Neff-PPAS   5: HHSEARCH   6: pGenTHREADER   7: PROSPECT2   8: SP3   9: FFAS03   10: MUSTER   

   Top 5 final models predicted by I-TASSER

(For each target, I-TASSER simulations generate a large ensemble of structural conformations, called decoys. To select the final models, I-TASSER uses the SPICKER program to cluster all the decoys based on the pair-wise structure similarity, and reports up to five models which corresponds to the five largest structure clusters. The confidence of each model is quantitatively measured by C-score that is calculated based on the significance of threading template alignments and the convergence parameters of the structure assembly simulations. C-score is typically in the range of [-5, 2], where a C-score of a higher value signifies a model with a higher confidence and vice-versa. TM-score and RMSD are estimated based on C-score and protein length following the correlation observed between these qualities. Since the top 5 models are ranked by the cluster size, it is possible that the lower-rank models have a higher C-score in rare cases. Although the first model has a better quality in most cases, it is also possible that the lower-rank models have a better quality than the higher-rank models as seen in our benchmark tests. If the I-TASSER simulations converge, it is possible to have less than 5 clusters generated; this is usually an indication that the models have a good quality because of the converged simulations.)
    (By right-click on the images, you can export image file or change the configurations, e.g. modifying the background color or stopping the spin of your models)
  • Download Model 1
  • C-score=-1.22 (Read more about C-score)
  • Estimated TM-score = 0.56±0.15
  • Estimated RMSD = 3.2±2.3Å

  • Download Model 2
  • C-score = -2.34

  • Download Model 3
  • C-score = -1.72

  • Download Model 4
  • C-score = -2.40

  • Download Model 5
  • C-score = -2.74


  Proteins structurally close to the target in the PDB (as identified by TM-align)

(After the structure assembly simulation, I-TASSER uses the TM-align structural alignment program to match the first I-TASSER model to all structures in the PDB library. This section reports the top 10 proteins from the PDB that have the closest structural similarity, i.e. the highest TM-score, to the predicted I-TASSER model. Due to the structural similarity, these proteins often have similar function to the target. However, users are encouraged to use the data in the next section 'Predicted function using COACH' to infer the function of the target protein, since COACH has been extensively trained to derive biological functions from multi-source of sequence and structure features which has on average a higher accuracy than the function annotations derived only from the global structure comparison.)


Top 10 Identified stuctural analogs in PDB

Click
to view
RankPDB HitTM-scoreRMSDaIDENaCovAlignment
11r6dA0.314 2.280.0500.600Download
22bp7G0.305 1.630.0500.750Download
31vrmA0.305 1.900.1000.600Download
45t2aAN0.299 2.050.0530.950Download
56m49B0.297 1.270.0500.800Download
67qlaC0.294 1.770.0000.600Download
74b6xA0.291 1.540.0500.950Download
83k2iB0.289 2.000.0500.850Download
95cekA0.288 2.730.0500.750Download
102kcyA0.287 1.950.0560.750Download

(a)Query structure is shown in cartoon, while the structural analog is displayed using backbone trace.
(b)Ranking of proteins is based on TM-score of the structural alignment between the query structure and known structures in the PDB library.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of the alignment by TM-align and is equal to the number of structurally aligned residues divided by length of the query protein.


  Predicted function using COFACTOR and COACH

(This section reports biological annotations of the target protein by COFACTOR and COACH based on the I-TASSER structure prediction. While COFACTOR deduces protein functions (ligand-binding sites, EC and GO) using structure comparison and protein-protein networks, COACH is a meta-server approach that combines multiple function annotation results (on ligand-binding sites) from the COFACTOR, TM-SITE and S-SITE programs.)

  Ligand binding sites


Click
to view
RankC-scoreCluster
size
PDB
Hit
Lig
Name
Download
Complex
Ligand Binding Site Residues
10.14 2 3prqZ PEPTIDE Rep, Mult 7,10,12,14,15
20.14 2 2zrcA PO4 Rep, Mult 4,6,7,8
30.14 2 3kziZ PEPTIDE Rep, Mult 10,12,15,19
40.07 1 3arcZ CLA Rep, Mult 15,18


Download the residue-specific ligand binding probability, which is estimated by SVM.
Download the all possible binding ligands and detailed prediction summary.
Download the templates clustering results.
(a)C-score is the confidence score of the prediction. C-score ranges [0-1], where a higher score indicates a more reliable prediction.
(b)Cluster size is the total number of templates in a cluster.
(c)Lig Name is name of possible binding ligand. Click the name to view its information in the BioLiP database.
(d)Rep is a single complex structure with the most representative ligand in the cluster, i.e., the one listed in the Lig Name column.
Mult is the complex structures with all potential binding ligands in the cluster.

  Enzyme Commission (EC) numbers and active sites


Click
to view
RankCscoreECPDB
Hit
TM-scoreRMSDaIDENaCovEC NumberActive Site Residues
10.1191sg4B0.273 2.860.0530.800 5.3.3.8  NA
20.1083k2iA0.278 2.410.0500.900 3.1.2.2  NA
30.0921qo8D0.218 2.570.1050.950 1.3.99.1  NA
40.0902bruC0.269 2.040.0530.800 1.6.1.2  NA
50.0831qo8A0.271 1.590.1000.800 1.3.99.1  NA

 Click on the radio buttons to visualize predicted active site residues.
(a)CscoreEC is the confidence score for the EC number prediction. CscoreEC values range in between [0-1];
where a higher score indicates a more reliable EC number prediction.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided
by length of the query protein.

  Gene Ontology (GO) terms
Top 10 homologous GO templates in PDB 
RankCscoreGOTM-scoreRMSDaIDENaCovPDB HitAssociated GO Terms
1 0.110.2780 2.41 0.05 0.903k2iA GO:0032789 GO:0004091 GO:0046459 GO:0000038 GO:0016291 GO:0016290 GO:0019605 GO:0016787 GO:0006637 GO:0032788 GO:0043648 GO:0001676 GO:0005777 GO:0006104 GO:0006629 GO:0016790
2 0.110.2808 2.62 0.07 0.751dj8A GO:0042597
3 0.110.2816 1.47 0.05 0.851x8yA GO:0005198
4 0.100.1177 1.76 0.07 0.402b9kA GO:0005576 GO:0042742
5 0.090.1797 1.72 0.10 0.902pa8D GO:0003899 GO:0016779 GO:0046983 GO:0003677 GO:0006351 GO:0016740 GO:0051536 GO:0046872 GO:0051538
6 0.080.1231 2.16 0.10 0.752jtmA GO:0003690 GO:0005737 GO:0003677
7 0.080.1085 2.35 0.05 0.651o6wA GO:0005515
8 0.080.1759 2.30 0.05 0.751xq8A GO:0030426 GO:0016044 GO:0051585 GO:0070555 GO:0042802 GO:0043524 GO:0046928 GO:0045920 GO:0032026 GO:0001963 GO:0042493 GO:0050544 GO:0045202 GO:0034341 GO:0034599 GO:0042775 GO:0031623 GO:0010642 GO:0008344 GO:0042393 GO:0048156 GO:0048488 GO:0005634 GO:0071902 GO:0031092 GO:0032496 GO:0000287 GO:0045502 GO:0051622 GO:0050806 GO:0005504 GO:0035067 GO:0040012 GO:0042417 GO:0033138 GO:0008198 GO:0010040 GO:0055074 GO:0006916 GO:0008270 GO:0051612 GO:0005515 GO:0006638 GO:0060079 GO:0032410 GO:0060732 GO:0006644 GO:0050812 GO:0014048 GO:0016020 GO:0030054 GO:0042416 GO:0010517 GO:0048169 GO:0006919 GO:0008219 GO:0048168 GO:0001956 GO:0043154 GO:0045807 GO:0031115 GO:0030544 GO:0043030 GO:0005739 GO:0019717 GO:0014059 GO:0005737 GO:0001774 GO:0005886 GO:0030424 GO:0019894 GO:0001921 GO:0032769 GO:0005509 GO:0006631 GO:0048489 GO:0005829 GO:0015629 GO:0070495 GO:0051281 GO:0051219 GO:0005938 GO:0043014 GO:0060961 GO:0043027 GO:0005856 GO:0043205 GO:0007006 GO:0060291
9 0.070.1900 2.39 0.00 0.851aduB GO:0003677 GO:0006260 GO:0006351 GO:0008270 GO:0042025
10 0.070.2985 2.27 0.05 0.601r66A GO:0016829 GO:0008460 GO:0000166 GO:0055114 GO:0003824 GO:0005488 GO:0009225 GO:0016491 GO:0044237 GO:0050662


Consensus prediction of GO terms
 
Molecular Function GO:0016290 GO:0004091 GO:0005198 GO:0046872 GO:0003677 GO:0003899 GO:0051538 GO:0046983
GO-Score 0.11 0.11 0.11 0.09 0.09 0.09 0.09 0.09
Biological Process GO:0000038 GO:0006104 GO:0043648 GO:0032789 GO:0001676 GO:0006637 GO:0032788 GO:0019605 GO:0042742 GO:0006351
GO-Score 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.09
Cellular Component GO:0005777 GO:0042597 GO:0005576
GO-Score 0.11 0.11 0.10

(a)CscoreGO is a combined measure for evaluating global and local similarity between query and template protein. It's range is [0-1] and higher values indicate more confident predictions.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided by length of the query protein.
(f)The second table shows a consensus GO terms amongst the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on CscoreGO of the template.


[Click on S806317_results.tar.bz2 to download the tarball file including all modeling results listed on this page]



Please cite the following articles when you use the I-TASSER server:
  • Wei Zheng, Chengxin Zhang, Yang Li, Robin Pearce, Eric W. Bell, Yang Zhang. Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods, 1: 100014 (2021).
  • Chengxin Zhang, Peter L. Freddolino, and Yang Zhang. COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Research, 45: W291-299 (2017).
  • Jianyi Yang, Yang Zhang. I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Research, 43: W174-W181, 2015.