>Q9NYA1 (145 residues) MDPAGGPRGVLPRPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHA RELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASL NHYAGYEQVTNEDLLTNCTLLLCRR |
Sequence |
20 40 60 80 100 120 140 | | | | | | | MDPAGGPRGVLPRPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHARELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASLNHYAGYEQVTNEDLLTNCTLLLCRR |
Prediction | CCCCCCCCCCCCCCCSSSSSSCCCCCCCCHHHHHHHHHHHHHHHCCCSSSSSSCCCCCHHHHHHHHHHHCCCCSSSSSCCCCHHHHHHHHHHHCCCCCCCCCCCSSSSCCCCHHHHHHHHCCCCCHHHHHHHHHHHHCSSSSSCC |
Confidence | 9956688776899967999987999997268999999999999909939999808977799999999872998899986986699999999835540014798589957976669999829999989998889986170312419 |
H:Helix; S:Strand; C:Coil | |
Sequence |
20 40 60 80 100 120 140 | | | | | | | MDPAGGPRGVLPRPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHARELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASLNHYAGYEQVTNEDLLTNCTLLLCRR |
Prediction | 8545743454344445424424231344403530362045106737050212205466202400440277512100000222002200200153554644450100000212000002112134424400433114302210048 |
Values range from 0 (buried residue) to 8 (highly exposed residue) | |
Rank | PDB hit | ID1 | ID2 | Cov | Norm. Zscore | Downloadalignment | 20 40 60 80 100 120 140 | | | | | | | | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS Seq | CCCCCCCCCCCCCCCSSSSSSCCCCCCCCHHHHHHHHHHHHHHHCCCSSSSSSCCCCCHHHHHHHHHHHCCCCSSSSSCCCCHHHHHHHHHHHCCCCCCCCCCCSSSSCCCCHHHHHHHHCCCCCHHHHHHHHHHHHCSSSSSCC MDPAGGPRGVLPRPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHARELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASLNHYAGYEQVTNEDLLTNCTLLLCRR | |||||||||||||||||||
1 | 3vzdA1 | 0.85 | 0.79 | 22.15 | 1.17 | DEthreader | MG--------LPRPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHARELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASLNH-YA-GYEQVLTNCTLLLCRR-LL | |||||||||||||
2 | 3vzdA1 | 0.98 | 0.94 | 26.48 | 1.69 | SPARKS-K | -----MGSGVLPRPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHARELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASLNHYAGYEQVTNEDLLTNCTLLLCRR | |||||||||||||
3 | 3vzdA1 | 1.00 | 0.90 | 25.30 | 0.71 | MapAlign | ------------RPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHARELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASLNHYAGYEQVTNEDLLTNCTLLLC-- | |||||||||||||
4 | 3vzdA1 | 0.98 | 0.94 | 26.48 | 0.59 | CEthreader | -----MGSGVLPRPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHARELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASLNHYAGYEQVTNEDLLTNCTLLLCRR | |||||||||||||
5 | 3vzdA1 | 0.98 | 0.94 | 26.48 | 1.88 | MUSTER | -----MGSGVLPRPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHARELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASLNHYAGYEQVTNEDLLTNCTLLLCRR | |||||||||||||
6 | 3vzdA1 | 0.98 | 0.94 | 26.48 | 2.08 | HHsearch | -----MGSGVLPRPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHARELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASLNHYAGYEQVTNEDLLTNCTLLLCRR | |||||||||||||
7 | 3vzdA1 | 0.99 | 0.94 | 26.27 | 1.89 | FFAS-3D | -------SGVLPRPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHARELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASLNHYAGYEQVTNEDLLTNCTLLLCR- | |||||||||||||
8 | 3vzdA1 | 0.98 | 0.94 | 26.48 | 0.53 | EigenThreader | -----MGSGVLPRPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHARELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASLNHYAGYEQVTNEDLLTNCTLLLCRR | |||||||||||||
9 | 4l02A | 1.00 | 0.94 | 26.46 | 1.42 | CNFpred | --------GVLPRPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHARELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASLNHYAGYEQVTNEDLLTNCTLLLCRR | |||||||||||||
10 | 3vzdA | 0.84 | 0.79 | 22.16 | 1.17 | DEthreader | MG--------LPRPCRVLVLLNPRGGKGKALQLFRSHVQPLLAEAEISFTLMLTERRNHARELVRSEELGRWDALVVMSGDGLMHEVVNGLMERPDWETAIQKPLCSLPAGSGNALAASLNH-YA-GYEQVLTNCTLLLCRRLLV | |||||||||||||
|
|
Top 10 structural analogs in PDB (as identified by
TM-align)
|
|
Top 5 enzyme homologs in PDB
|
Template proteins with similar binding site:
|
References: | |
1. | Wei Zheng, Chengxin Zhang, Yang Li, Robin Pearce, Eric W. Bell, Yang Zhang. Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. In preparation, 2020. |