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Abstract

ModelCIF (github.com/ihmwg/ModelCIF) is a data information framework developed for and by computa-
tional structural biologists to enable delivery of Findable, Accessible, Interoperable, and Reusable (FAIR)
data to users worldwide. ModelCIF describes the specific set of attributes and metadata associated with
macromolecular structures modeled by solely computational methods and provides an extensible data
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representation for deposition, archiving, and public dissemination of predicted three-dimensional (3D)
models of macromolecules. It is an extension of the Protein Data Bank Exchange / macromolecular Crys-
tallographic Information Framework (PDBx/mmCIF), which is the global data standard for representing
experimentally-determined 3D structures of macromolecules and associated metadata. The PDBx/
mmCIF framework and its extensions (e.g., ModelCIF) are managed by the Worldwide Protein Data Bank
partnership (wwPDB, wwpdb.org) in collaboration with relevant community stakeholders such as the
wwPDB ModelCIF Working Group (wwpdb.org/task/modelcif). This semantically rich and extensible data
framework for representing computed structure models (CSMs) accelerates the pace of scientific discov-
ery. Herein, we describe the architecture, contents, and governance of ModelCIF, and tools and pro-
cesses for maintaining and extending the data standard. Community tools and software libraries that
support ModelCIF are also described.
� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license (http://creativecom-

mons.org/licenses/by/4.0/).
Introduction

Brief history of computed structure models
(CSMs)

Protein Data Bank (PDB) is the single global
repository for three-dimensional (3D) structures of
biological macromolecules determined
experimentally using macromolecular
crystallography (MX), nuclear magnetic resonance
(NMR) spectroscopy, and electron microscopy
(3DEM). It was established in 1971 as the first
open-access digital data resource in biology with
seven protein structures.1–2 At the time of writing,
the archive contained >200,000 structures of pro-
teins, nucleic acids, and their complexes with one
another and with small-molecule ligands (e.g.,
approved drugs, investigational agents, enzyme
cofactors). This metric is a testament to the collec-
tive efforts and technological advances made by
structural biologists working on all inhabited conti-
nents. It also highlights a daunting reality—that
99% of protein structure space remains unexplored
by experimental methods. Inspired by the work of
Anfinsen in 1973,3 computational structural biolo-
gists began trying to predict the 3D structure of a
protein from its amino acid sequence.
wTwo distinct approaches for protein structure

prediction4 have been pursued (Figure 1). The
first approach is template-based structure predic-
tion (also known as homology modeling or com-
parative modeling), in which the structure of an
unknown protein (target) is modeled computation-
ally based on the similarity of its amino acid
sequence to that of a protein with a known struc-
ture (template). Homology modeling is generally
successful when template structures from the
PDB can be identified and accurately aligned to
the target sequence. The second approach is
template-free structure prediction, also known as
ab initio or de novo modeling, which can be
applied even when reliable structural templates
are not available for the protein of interest. In
recent years, intramolecular residue-residue con-
2

tact predictions based on coevolution data5 have
been successfully applied for template-free struc-
ture prediction.6

Several automated software tools and web
servers support template-based or template-free
structure prediction, including, but not limited to,
SWISS-MODEL,7 Modeller,8 ROSETTA,9 I-
TASSER,10 QUARK,11 AlphaFold2,12 and RoseT-
TAFold.13–14 In the Critical Assessment of Tech-
niques for Protein Structure Prediction (CASP14)
challenge conducted in 2020,15 AlphaFold2 demon-
strated unprecedented levels of success, an
achievement largely enabled by breakthroughs
applying machine learning (ML) approaches to pro-
tein structure prediction. Following CASP14,
another ML-based method, RoseTTAFold, was
developed and subsequently applied in combina-
tion with AlphaFold2 to predict the structures of
hetero-dimeric complexes of eukaryotic proteins.14

TheseML-based structure predictionmethods have
proven highly successful and are now capable of
generating computed structure models (CSMs) with
accuracies comparable to that of lower-resolution
experimentally-determined structures.16

Paralleling advances in protein structure
prediction methodologies, data resources were
established to provide open access to modeled
structures. SWISS-MODEL Repository17 and
ModBase18 housemillions of CSMs of proteins gen-
erated using SWISS-MODEL or Modeller, respec-
tively. In addition, the ModelArchive, developed at
the Swiss Institute of Bioinformatics (SIB, https://
www.modelarchive.org/), was created to archive
and provide stable digital object identifiers (DOIs)
for CSMs referenced in publications. ModelArchive
includes CSMs which were stored in the PDB
before 2006 and has been accepting new deposi-
tions since 2013. At the time of writing, the Alpha-
Fold Protein Structure Database (AlphaFold DB)19

held more than 200 million protein CSMs generated
by AlphaFold2. They are freely available and repre-
sent virtually all of the protein sequences cataloged
in UniProtKB.20

http://wwpdb.org
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Figure 1. Schematic representation of modeling methods using target sequence(s), structure databases (e.g.,
PDB), and sequence databases (e.g., Uniclust3051) as input to produce CSMs and estimates of prediction
confidence. Homology modeling uses specific templates as its main input, while ab initio methods work without
templates. Commonly used ab initio methods rely on multiple sequence alignments, which are either used directly as
input for end-to-end structure prediction or processed to extract spatial restraints used to generate CSMs.
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Significance of data standards in archiving
scientific data

Data standards are technical specifications
describing the semantics, logical organization, and
physical encoding of data and associated
metadata. They serve as the foundation for
collecting, processing, archiving, and distributing
data in a standard format and promoting the FAIR
(Findable, Accessible, Interoperable and
Reusable) principles emblematic of responsible
data management in the modern era.21 In addition
to representing the results of a scientific investiga-
tion, additional metadata (such as software,
authors, citations, references to external data)
may be required to support data exchange among
different stakeholders, including data generators,
archives, and data consumers. If a consistent
mechanism is utilized to store such information, it
can be shared using common software, agnostic
of the data provider, enabling better interoperation
among resources and facilitating data search,
retrieval, and reuse. Involving community experts
in developing and subsequently extending data
standards ensures that they are readily adopted
by the community and facilitates continuous update
of the standards as the field evolves.
History of PDBx/mmCIF data standard for
representing macromolecular structures

One of the earliest archival formats in structural
biology is the legacy PDB format.22 Developed in
the 1970 s, it is human and machine readable, easy
to parse, and remained the PDB standard
exchange format for over forty years. However, it
has several drawbacks, including fixed field widths,
column positions, and metadata format, which
posed severe limitations for archiving large macro-
molecular structures, data validation, and future
expansion to support newer experimental methods.
3

In 1990, the Crystallographic Information
Framework (CIF)23 was adopted by the Interna-
tional Union of Crystallography (IUCr) as a commu-
nity data standard to describe small-molecule X-ray
diffraction studies. Later, in 1997, the IUCr
approved the mmCIF data standard24 to support
MX experiments. The original mmCIF data standard
was subsequently extended by the PDB to support
other experimental methods (e.g., NMR, 3DEM),
and to create the PDBx/mmCIF data dictionary.25–
26 In 2014, this standard was adopted by the world-
wide PDB (wwPDB, wwpdb.org)2,27 as the master
format for the PDB archive. The framework describ-
ing PDBx/mmCIF is regulated by Dictionary Defini-
tion Language 2 (DDL2), a generic language that
supports construction of dictionaries composed of
data items grouped into categories.28 DDL2 sup-
ports primary data types (e.g., integers, real num-
bers, text), boundary conditions, controlled
vocabularies, and linking of data items together to
express relationships (e.g., parent–child relation-
ships). Additionally, software tools have been
developed to manage the PDBx/mmCIF dictionary
(mmcif.wwpdb.org/docs/software-resources.html).
PDBx/mmCIF overcame the limitations of the
legacy PDB format and has been extended to repre-
sent small-angle solution scattering data29 and inte-
grative structure models.30
History of ModelCIF and the wwPDB ModelCIF
Working Group

ModelCIF provides definitions for the specific set
of attributes and metadata associated with CSMs.
Initial efforts to extend PDBx/mmCIF to support
CSMs began in 2001 with creation of the MDB
dictionary31. In 2006, the outcomes of a Workshop
organized by the Research Collaboratory for Struc-
tural Bioinformatics (RCSB) PDB at Rutgers
included recommendations to build a common por-

http://wwpdb.org
http://mmcif.wwpdb.org/docs/software-resources.html
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tal for accessing structural models and develop data
standards to support CSMs32. The Protein Model
Portal (PMP)33 was created at SIB in collaboration
with the Protein Structure Initiative (PSI) Structural
Biology Knowledgebase.34 A collaborative project
between RCSB PDB and SIB was initiated in
2016 to create data standards that represent CSMs
in the PMP and the ModelArchive. These data stan-
dards were designed as an extension of PDBx/
mmCIF to facilitate interoperation with PDB data.
The first set of ModelCIF definitions was released
on GitHub in 2018 (github.com/ihmwg/ModelCIF).
The ModelCIF Working Group (WG) was

established in 2021 as a collaboration between
the wwPDB partners (RCSB PDB, Protein Data
Bank in Europe (PDBe), Protein Data Bank Japan
(PDBj), Electron Microscopy Data Bank (EMDB),
and Biological Magnetic Resonance Bank
(BMRB)) and domain experts in computational
structural biology (wwpdb.org/task/modelcif). In
addition to wwPDB members, the WG includes
representatives from ModelArchive, SWISS-
MODEL, Genome3D,35 ModBase, I-TASSER,
AlphaFold database, AlphaFold2/DeepMind, and
RoseTTAFold. The WG is involved in development
and maintenance of the ModelCIF data standard for
representing and archiving CSMs and promotes its
adoption across the computational biology commu-
nity. The WG also promotes development of soft-
ware tools supporting ModelCIF, such as the
python-modelcif software library (github.com/
ihmwg/python-modelcif). Feedback to the WG via
email is welcome (modelcifwg@wwpdb.org).
Results and Discussion

Data definitions reused from PDBx/mmCIF

In developing ModelCIF, various core PDBx/
mmCIF dictionary definitions have been reused.
These include representation of small-molecule
ligands, polymeric macromolecules, biomolecular
complexes, and their atomic coordinates, as well
as related metadata definitions about modeling
software used, bibliographic citations, and author
names (Figure 2).
ModelCIF data definitions

Given the variety of existing modeling methods,
ModelCIF aims to be flexible regarding data
representation. To fulfill this goal, new data
categories were introduced to: (i) store input and
intermediate results that are of relevance for
existing methods; (ii) provide estimates of local
and global CSM confidence; (iii) describe steps
used to generate CSMs; and (iv) refer to data
stored in associated files. New ModelCIF
definitions are summarized in Figure 2.
In addition to CSM atomic coordinates, two sets

of data items are mandatory: (i) details regarding
modeled targets and (ii) list of CSMs included in
4

the file. New definitions are provided for capturing
information pertaining to the origin of modeled
molecular entities. This feature is particularly
useful for cross-referencing to external databases
for macromolecular sequences (e.g., UniProtKB)
and small molecules (e.g., PubChem,36 ChEBI).37

Definitions supporting inclusion of small molecules
that are not already specified in the wwPDB chem-
ical component dictionary (CCD)38 are also
provided.
In ModelCIF, CSMs can be combined into groups

that may belong to an ensemble (or cluster).
Structural assemblies must be homogeneous (i.e.,
every CSM in an entry must have identical
composition of molecules). Each CSM can be
classified as “homology model”, “ab initio model”
or “other” if neither descriptor is appropriate. The
“homology model” category is used for any
modeling method (including comparative modeling
and protein threading) where the main inputs for
generating the CSM are sequence alignments to
templates. CSMs generated without templates (or
where templates are not considered dominant
inputs) are classified as “ab initio model” (including
fragment sampling and ML-based methods).
Homology modeling methods, as used by

SWISS-MODEL and Modeller for example,
typically consist of three steps: (i) template
identification; (ii) target-template alignment; and
(iii) atomic coordinate generation. ModelCIF
includes data categories to store the most relevant
intermediate results in a standardized way,
including a summarized version of the template
search results with cross-references to relevant
structure databases (e.g., PDB) and detailed
information regarding template structures and
target-template alignments used for modeling.
Ab initiomethods start from sequence information

without relying on structural templates. Methods
such as I-TASSER generate CSMs using folding
simulations guided by deep learning predicted
spatial restraints extracted from multiple sequence
alignments (MSAs) and corresponding co-
evolutionary features. The spatial restraints from
deep learning predictors could be residue-residue
contacts, distances, dihedral angles, torsion
angles, or hydrogen-bonding networks. ModelCIF
enables storage of MSAs, homologous templates
(optionally used as input structures for ab initio
methods), and derived spatial restraints, used by
ab initio folding simulations to model CSMs. ML-
based ab initio methods such as AlphaFold2 and
RoseTTAFold do not rely on features extracted
from templates or MSAs but can instead use them
as raw input to an “end-to-end” neural network
that directly generates the atomic coordinates.
Consequently, ModelCIF allows for inclusion of
simplified descriptions of relevant input data and
intermediate results. ModelCIF can also store
information about sequence databases used to
construct MSAs (including versions and download

http://github.com/ihmwg/ModelCIF
http://wwpdb.org/task/modelcif
http://github.com/ihmwg/python-modelcif
http://github.com/ihmwg/python-modelcif


Figure 2. Schematic representation of the data specifications in ModelCIF. Definitions reused from PDBx/mmCIF
are shown in white boxes (e.g., Atomic Coordinates) and the newly added definitions are shown in gray boxes (e.g.,
Model Quality Metrics). (A) Descriptions are provided for input data used in template-based and template-free
modeling. (B) Representations of molecular components are retained from PDBx/mmCIF. (C) Definitions for atomic
coordinates, secondary structure features, and ensembles are taken from PDBx/mmCIF; descriptions of local and
global CSM quality metrics are defined in ModelCIF. (D) Several metadata definitions from PDBx/mmCIF are reused.
New metadata definitions regarding modeling protocol, CSM classification (ab initio, homology, etc.) and descriptions
of associated files are included in ModelCIF. Examples of CSM-specific data and metadata represented in ModelCIF
are provided in the Supplementary Material.
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URLs) and minimal details regarding any input
structures utilized.
While CSMs generated with the newest

techniques have become increasingly accurate, it
is critical that they are accompanied by estimates
of model quality (or prediction confidence). Quality
estimates are used to evaluate models and
assess their suitability for specific downstream
applications. ModelCIF includes flexible support to
define any number of quality assessment values.
These are classified according to how they are to
be interpreted (e.g., probabilities, distances,
energies) or as a prediction of the similarity to the
correct structure according to well defined metrics
such as the TM-score39 or lDDT.40 Quality estimate
values can be provided globally per CSM and locally
5

per residue, to identify high- and low-quality
regions, and per residue-pair, to enable assess-
ment of contacts and domain orientations.
To facilitate reproducibility of structure prediction

and to acknowledge use of publicly available
software and web services, ModelCIF allows
inclusion of generic definitions describing
modeling protocols. Minimally, such definitions
may include a free-text description of the modeling
protocol as a single step. Ideally, however,
multiple steps involved in structure modeling can
be described. These steps can be linked to input
data (e.g., target sequences, template structures,
alignments, predicted contacts), software used
(including parameters, version information), and
output generated (e.g., CSMs), allowing to capture
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intermediate results obtained at each step. To keep
data file sizes manageable, ModelCIF provides
metadata definitions supporting description of one
or more associated files. The data content of
associated files can be large intermediate results,
such as MSAs or quality estimates for residue-
pairs. A variety of generic file formats are allowed
for associated files.

Supporting software tools and resources

Table 1 provides a list of software tools and CSM
resources that support ModelCIF. Additional details
concerning these tools and resources are included
in the Supplementary Material.

Advantages of ModelCIF

The value and benefits of ModelCIF are most
readily recognized through its support for the FAIR
principles. ModelCIF provides foundational data
standards for archiving CSMs, making them freely
available, and enabling seamless data exchange.
Moreover, extending PDBx/mmCIF to establish
ModelCIF as a data standard in its own right
provides the following advantages: (a) existing
definitions in PDBx/mmCIF for representing the
atomic structures of biological macromolecules,
small-molecules, and molecular complexes can be
reused; (b) software tools developed to support
PDBx/mmCIF can be reused and expanded to
support the extension; (c) ModelCIF can be
extended to address evolving needs of the
Table 1 Software tools and CSM resources supporting Mode

Software / Resource

Name

URL Descr

Software Tools for Reading, Writing, Conversion, and Validation of M

python-modelcif https://github.com/ihmwg/

python-modelcif

Softwa

files a

ModelCIF- converters https://git.scicore.unibas.ch/

schwede/modelcif-converters

Collec

wwPDB mmCIF software

resources webpage

https://mmcif.wwpdb.

org/docs/software-resources.

html

Websi

suppo

ciftool

Modeling Applications and CSM Repositories

ModelArchive https://www.modelarchive.org Repos

SWISS-MODEL7 https://swissmodel.expasy.org Fully a

reposi

Modeller8 https://salilab.org/modeller/ Softwa

Zhang-Group servers (I-

TASSER10, QUARK11)

https://zhanggroup.org/D-I-

TASSER/

https://zhanggroup.org/C-

QUARK/

Ab init

protein

AlphaFold DB19 https://alphafold.ebi.ac.uk Repos

RoseTTAFold†,13–14 https://robetta.bakerlab.org Softwa

structu

Visualization Software

Mol*52 https://molstar.org Web-b

ChimeraX53 https://www.cgl.ucsf.edu/

chimerax/

Deskto

† At the time of publication, RoseTTAFold module of the Robetta s

6

structure prediction community (e.g., protein
sequence embedding, neural network model
metadata); and (d) the extension facilitates
interoperation with other structural biology data
resources (e.g., PDB). For example, recent
updates to the RCSB.org web portal to include
>1,000,000 CSMs available freely from
AlphaFoldDB and the ModelArchive was facilitated
by ModelCIF41. To achieve improved parsing per-
formance and compression, ModelCIF files can be
readily converted to BinaryCIF format.42
Conclusion and Perspectives

Computational structural biology is rapidly
advancing before our eyes as a discipline. During
manuscript preparation, Meta AI announced the
development of their own ML-based method for
protein structure prediction and used it to generate
more than 600 million CSMs that are now publicly
available.43 It is also likely that additional open-
access resources distributing CSMs of proteins will
emerge before this paper appears in print. Ideally,
each of these newly established databases of pre-
dicted structures will embrace the ModelCIF data
standard for deposition, archiving, and dissemina-
tion of CSMs. The wwPDB ModelCIF Working
Group is committed to maintaining and updating
the data standard as new approaches to computa-
tional structure modeling of biological macro-
molecules emerge and are validated. The wwPDB
is also supporting community efforts, such as the
lCIF.

iption

odelCIF Files

re library that supports reading, writing, and validating ModelCIF

nd conversion between mmCIF and BinaryCIF

tion of ModelCIF conversion tools based on python-modelcif

te that lists community-developed software libraries and tools that

rt PDBx/mmCIF, many of which also support ModelCIF (e.g.,

s-java, py-mmcif)

itory for CSMs contributed by modelers

utomated protein structure homology modeling server and

tory

re used for comparative modeling of protein 3D structures

io and homology modeling servers for protein structure prediction,

peptide folding, and structure-based function annotation

itory for 3D structures of proteins predicted using AlphaFold2

re tool that uses a three-track neural network to predict protein

res

ased structure visualization and analysis tool

p-based structure visualization and analysis tool

tructure prediction server will support ModelCIF.
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3D-Beacons network,44 to encourage adoption of
common data standards and facilitate access to
3D-structure information.
Looking ahead, CSMs of large, intricately folded

ribonucleic acid (RNA) chains may be of particular
importance to basic and applied researchers
working across fundamental biology, biomedicine,
biotechnology/bioengineering, and the energy
sciences. Progress in this field is driven by the
development of several RNA structure prediction
and model quality assessment tools (e.g.,
SimRNA45, RNAComposor46, FARFAR247, Vfold48,
NAST49, ARES50). Community-organized blind
challenges such as CASP will continue to be impor-
tant in accelerating technical developments in de
novo structure prediction for both proteins and
nucleic acids.
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