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Abstract

The multiple sequence alignment (MSA) is the entry point of many RNA structure modeling tasks, such as
prediction of RNA secondary structure (rSS) and contacts. However, there are few automated programs
for generating high quality MSAs of target RNA molecules. We have developed rMSA, a hierarchical pipe-
line for sensitive search and accurate alignment of RNA homologs for a target RNA. On a diverse set of
365 non-redundant RNA structures, rMSA significantly outperforms an existing MSA generation method
(RNAcmap) by approximately 20% and 5% higher F1-scores for rSS and long-range contact prediction,
respectively. rMSA is available at https://zhanggroup.org/rMSA/ and https://github.com/pylelab/rMSA.
� 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecom-

mons.org/licenses/by/4.0/).
Introduction

Detecting homologous sequences and aligning
them into a multiple sequence alignment (MSA) is
the first step for many bioinformatics analyses,
such as structure prediction and functional
annotation. Due to the importance of MSA in
protein biology, especially in protein structure
prediction, many sophisticated MSA generation
approaches have been proposed.1–3 It was found
that improved MSAs alone can immediately result
in more accurate protein structure prediction.
By contrast, in RNA biology, there are few

studies on how to construct a high quality MSA
for a target sequence, although several
studies4–5 have shown that MSAs are as impor-
tant to RNA structure prediction as they are for
rs. Published by Elsevier Ltd.This is an open acc
protein structure prediction. To our knowledge,
the only two automated pipeline for constructing
MSA for a target RNA are RNAcmap6 and
RNAlien.7 RNAcmap performs a relatively
straightforward process of converting blastn8 hits
into a sequence profile (in the form of a covari-
ance model, CM), which is then used by the
cmsearch program of Infernal9 to search the
NCBI nucleotide (nt) database. As shown later,
this simple approach can lead to unnecessarily
large MSAs that are not guaranteed to be optimal
for RNA structure prediction. On the other hand,
RNAlien performs iterative blastn search, MSA
construction and CM building using increasingly
permissive taxonomy restraints. Since RNAlien
only aligns blastn hits rather than hits from the
more sensitive Infernal method, its homolog
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Journal of Molecular Biology 435 (2023) 167904

mailto:zhang@zhanggroup.org
mailto:anna.pyle@yale.edu
mailto:anna.pyle@yale.edu
https://twitter.com/pylelab
https://doi.org/10.1016/j.jmb.2022.167904
https://zhanggroup.org/rMSA/
https://github.com/pylelab/rMSA
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jmb.2022.167904


C. Zhang, Y. Zhang and A.M. Pyle Journal of Molecular Biology 435 (2023) 167904
detection has limited sensitivities. Consequently,
RNAlien alignments tend to be shallow, as shown
later.
It should be clarified that our work discusses the

generation of an MSA for a target sequence by
simultaneous sequence database search and
homolog alignment. This is different from the
“RNA MSA problem” to generate an MSA for
given set of homologs; this problem is addressed
by many existing programs such as LocARNA,10

TurboFold II,11 and RAF.12 These algorithms do
not perform database searches for an RNA
sequence.
Perhaps due to the lack of standard pipelines for

RNA homology search and MSA generation, it is a
common practice for RNA structure modeling
studies13–16 to useMSAs from the Rfam17 database
for benchmarks. Rfam alignments are usually of
exceptionally high quality for three reasons: first,
their initial alignments are constructed semi-
manually by a human expert and cannot be easily
replicated by automated programs; second, most
Rfam entries are for relatively well characterized
RNA families with a substantial number of
sequences; third, 50 and 30 termini of RNAs that
are not well aligned with other homologs are
excluded from the Rfam alignment. Due to the
semi-manual curation and biased selection nature
of Rfam, aforementioned methodological studies
using RfamMSAs as benchmarks cannot be gener-
alized to a less studied target RNA that is not cov-
ered by Rfam.
An area of RNA biology that is in dire need of

an automated MSA generator is covariance
analysis, also called coevolution analysis, of
RNA secondary structure (rSS).13–14,18 Although
RNA rSS prediction is a classical problem that
can be addressed by single-sequence-based pre-
dictions derived from thermodynamics19–20 or,
more recently, supervised machine learning,4

MSA-based rSS modeling by covariance analysis
still has its unique applications. In a covariance
analysis, co-mutation patterns across different
positions of the MSA are computed, where pairs
of nucleotides with statistically greater amount of
co-mutation events are considered more likely
to physically interact, e.g., through canonical
base pairing. This is a classical approach in
RNA bioinformatics and had led to the successful
prediction of conserved rSS in 5S rRNAs21 and
introns.22 Thus, covariance analysis is often used
as the statistical evidence for evolutionarily con-
served rSS, while alternative methods using ther-
modynamics or supervised machine learning
cannot readily consider the evolutionary aspect
of rSS. This is especially true for large RNAs
such as long non-coding RNAs and single-
stranded RNA genomes, which are known to
have well-defined rSS23–26 but the evolutionary
significance of their rSS is elusive.14,27 Since
covariance analysis depends completely on sta-
2

tistical features calculated from the MSA, the cor-
rectness of this analysis is contingent on the
quality of the MSA.
To meet the need for high quality MSAs in

applications such as RNA structure modeling,
especially covariance-based secondary structure
prediction, we developed rMSA to automate RNA
MSA construction by sequence-sequence and
profile-sequence alignment (Figure 1). Compared
to existing programs for generating RNA MSAs,
rMSA consistently and significantly improves
prediction of rSS and contacts. While rMSA uses
a set of component methods (blastn, Infernal and
RNAfold) similar to a previous method
(RNAcmap), our algorithm uses a novel five-stage
hierarchical sequence search strategy that avoids
the excessive incorporation of unrelated
sequences. It also features a unique covariance-
based MSA selection strategy that consistently
improves the final alignment quality. Both
strategies are not found in any previous RNA
MSA approach, such as RNAcmap. The rMSA
webserver and source code are available at
https://zhanggroup.org/rMSA/ and https://
github.com/pylelab/rMSA, respectively.
Results

Dataset

The rMSA pipeline was tested on a benchmark
dataset of 361 non-redundant RNA chains that are
collected from the PDB database, where each
chain has 30 to 750 nucleotides and at least 10
intra-chain canonical base pairs assigned by
DSSR.28 Only structures with resolution better than
4�A are included. Any two chains in the dataset must
share < 80% sequence identity according to CD-
HIT-EST.29 This 80% identity cutoff has been used
in previous studies4–5 and is the minimal cutoff of
CD-HIT-EST. The dataset includes diverse types
of RNAs including rRNAs, tRNAs, introns and many
others (Table S1).
Overview of the rMSA pipeline

The rMSA pipeline consists of five stages of
nucleotide sequence searches and alignments
through the standard RNAcentral and nt
databases. Each stage corresponds to one
column in Figure 1. While RNAcentral collects and
annotates many kinds of non-coding RNAs,30

�90% of annotated RNAs in this database are
tRNAs and rRNAs with molecular function
“GO:0003735 structural constituent of ribosome”
and “GO:0030533 triplet codon-amino acid adaptor
activity”, respectively. In this sense, RNAcentral can
be considered a subset of the nt database, which
collects both genomic and transcriptomic nucleotide
sequences, including non-coding RNAs, protein-
coding RNAs and non-transcribed regions. As of
Nov 9, 2020, RNAcentral and nt contain approxi-
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Figure 1. The rMSA pipeline generates five different MSAs. “CM” and “rc” are short for Covariance Model and the
RNAcentral database, respectively. Nfcut = 128. The blastn searches are performed with “-max_target_seqs 50,000 -
strand plus” and “-max_target_seqs -strand both” options to search only the plus strand in RNAcentral and both
strands in nt, respectively, as RNAcentral is a transcriptomic database while nt is a genomic database. For similar
reasons, cmsearch was performed using the “–toponly –incE 10.0” option for the plus strand in RNAcentral and “–incE
10.0” for both strands in nt. The e-value cutoff –incE 10.0 is the same as that used in a previous study,6 where it was
found to improve MSA quality. The nhmmer search was performed using “–watson” to only consider alignments with
directions that are consistent with blastn alignments.
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mately 18 billion and 332 billion nucleotides,
respectively.
Table 1 Average alignment depth of different MSA
construction schemes, measured by the number of
sequences (N) and the number of effective sequences
(Nf).

MSA N Nf P-value

rMSA stage 1 3722.6 62.8 9.83E-21

rMSA stage 2 4933.5 85.4 5.05E-15

rMSA stage 3 5154.6 93.1 2.51E-5

rMSA stage 4 5273.0 96.7 1.02E-4

rMSA stage 5 5239.2 96.2 8.01E-5

rMSA † 5292.0 98.1 *

rMSA (Nf) † 5308.8 98.7 9.97E-1

rMSA (SCI) † 4285.8 73.9 2.08E-12

RNAcmap 23226.8 70.8 1.83E-3

Infernal 9177.0 21.9 2.57E-29

nhmmer 3111.3 2.9 4.15E-42

blastn 1014.1 0.3 5.07E-44

RNAlien 2.0 0.1 1.33E-34

* All p-values are calculated by one-tail t-test to check if rMSA

has higher Nf than the respective MSA schema. P-val-

ues < 0.05 are in bold.
† “rMSA” is the final MSA output by the standard rMSA. Since

the final MSA is selected by a covariance-based MSA score

rather than the alignment depth, it is possible for the final MSA

to be shallower than the MSAs with the highest Nf. The highest

Nf MSA and highest SCI MSA among the MSAs from the five

stages are denoted as “rMSA (Nf)” and “rMSA (SCI)”, respec-

tively, in this table.
Depth of MSAs from rMSA

Table 1 compares the depth of alignments from
rMSA to those from a state-of-the-art MSA
generator (RNAcmap) and three commonly used
sequence search tools (Infernal, nhmmer and
blastn). Infernal, RNAcmap and rMSA all require
an initial rSS for CM construction; this rSS is
predicted by RNAfold20 in this benchmark. In
Table 1, the difference between “RNAcmap” and
“Infernal” is on how the query CM was constructed:
“RNAcmap” constructs the CM from blastn MSA;
“Infernal” constructs the CM from the target
sequence alone. Similarly, “nhmmer” and “blastn”
in Table 1 also start from the target sequence alone
instead of a pre-aligned sequence profile. All four
third-party MSA programs were used with the
default search parameters and they each employ
the same sequence databases (RNAcentral and
nt) as rMSA. The alignment depth is quantified by
the number of unique sequences (N) and the num-
ber of effective sequences (Nf), which is the number
of sequences that are non-redundant at 80%
sequence identity cutoff divided by the square root
of sequence length, in the MSA (Text S1). Nf is
one of themost commonly usedmetrics in the struc-
ture prediction community for quantifying the depth
of an MSA.31 Here, the 80% sequence identity cut-
3
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off inNf is established by a previous study13 on RNA
covariance analysis.
As rMSA progresses from Stage 1 to 4, the

alignment depth gradually increases, while the
alignment depth of Stage 4 and 5 is comparable
(Table 1). On average, 34.2% of the sequences in
each stage differ from those of the previous stage.
While the highest Nf stage is not always selected
by rMSA as the final alignment, the Nf of the final
alignment and that of the deepest alignment is
comparable (rMSA versus rMSA (Nf) in Table 1).
Although rMSA does not produce the deepest
alignment in terms of the number of sequences
(N), it is the method with the highest number of
effective sequences (Nf). For example, although
the average N of rMSA is only 22.8% of that of
RNAcmap, the average Nf of rMSA is 38.6%
larger. Since Nf considers sequence redundancy
up to 80% sequence identity, these data suggest
that rMSA alignment is more diverse and includes
fewer redundant sequences.
A more detailed analysis is shown in Figure S1,

which shows the per-target alignment depths of
rMSA alignments versus those of RNAcmap, as
well as the overall distribution of alignment
depth. A large majority of targets have greater
alignment depth by rMSA than by RNAcmap
(red in Figure S1(A) and (C)). Nonetheless,
RNAcmap has greater alignment depth (blue in
Figure S1(A) and (C)) for a small fraction of
targets, most of which are tRNAs and large
subunit rRNAs. Moreover, the alignment depth
of RNAcmap is more unstable, with 22.1% and
1253.4% higher standard deviations for Nf and
N, respectively, than those of rMSA. In other
words, the alignment depth of rMSA is more
consistent, where ultra-shallow or extra-deep
MSAs rarely occur. This is thanks to the multi-
stage setup of rMSA, which terminates the
pipeline when an intermediate stage already
achieves a sufficient alignment depth. More
uniform alignment depths are advantageous for
downstream covariance analysis, which cannot
effectively extract co-mutation statistics from
ultra-shallow MSAs and will run out of memory
when fed with unnecessarily large MSAs. Since
not all input RNAs will go through all five
stages of the rMSA, the running time only has
a moderate dependency to input sequence
length (Pearson Correlation Coefficient = 0.71,
Figure S2).
In addition to the standard rMSA pipeline where

the final rMSA alignment is selected by the
covariance-based MSA score from Equation (1),
we also tested the selection of rMSA alignments
by Nf or Structure Conservation Index (SCI; see
details in Text S2). Among the alignments from
these three selection strategies, the SCI selected
alignment is the shallowest in terms of both Nf
and N. This is because SCI is a measurement of
consistency among different sequences in the
4

same MSA,32 causing high SCI alignments to have
less diverse sequences.
Deeper MSAs are not always of higher qualities:

very large MSAs can be incorrectly constructed,
for example, by including too many unrelated
sequences or by aligning related sequences to
incorrect positions. Therefore, to objectively
assess the qualities of the MSAs, the following
sections designed two MSA-based RNA structure
prediction tasks (rSS and contact predictions).

rMSA improves rSS prediction

The MSA is the sole input for covariance-based
rSS prediction. Therefore, the accuracy of
covariance-based rSS prediction should be a
sensitive indicator of the MSA quality. Two
covariance programs are included: PLMC and R-
scape. It was recently reported33 that incorporating
thermodynamic parameters into covariance analy-
sis of R-scape via the --RAFSp option (i.e., RNAal-
ifold with stacking) can improve its rSS prediction
accuracy for some challenging cases. Therefore,
Table 2 includes both the default R-scape and the
R-scape running with RAFSp statistics. Table S2
also included another two rSS predictors, PETfold34

and RNAalifold,35 both of which combine evolution-
ary conservation and thermodynamics parameters.
In Table 2, the accuracy of rSS prediction is

quantified by two metrics: F1-score and Mathews
Correlation Coefficient (MCC) of top Ln predicted
canonical base pairing, where Ln is the number of
canonical base pairs in the native structure
assigned by DSSR. Details of F1-score and MCC
calculation are explained in Text S3. This section
only treats the PLMC and R-scape programs as
predictors for rSS, regardless of whether the rSS
is evolutionarily conserved. Therefore, Table 2
reports all top Ln predicted canonical base pairs
by R-scape (with and without the RAFSp
statistics) regardless of whether the pairs are
considered significant (with E-value < 0.05) by R-
scape.
As shown in Table 2, rMSA produces significantly

more accurate MSAs with 19.3%, 15.0% and 8.9%
higher rSS prediction F1-score by PLMC, R-scape
and R-scape --RAFSp, respectively, than
RNAcmap, which in turn has higher F1-scores
than other existing MSA approaches. rMSA
internally uses nhmmer, blastn and Infernal.
RNAcmap uses blastn and Infernal. It is therefore
not surprising that rMSA and RNAcmap
outperform nhmmer, blastn and Infernal when
these three programs are used individually. On
the other hand, although RNAlien also internally
uses blastn and Infernal, its performance is much
worse than any other pipeline listed in Table 2.
This is caused by the shallowness of RNAlien
alignments, most of which have no more than 2
sequences (Table 1). Although the comparison
among rMSA, RNAcmap and RNAlien is adequate
to prove the value of rMSA, we nonetheless keep



Table 2 Average rSS prediction accuracies by different MSA construction and covariance-based rSS prediction
schemes. Accuracies are measured by F1-score and MCC, where a perfect prediction would achieve 1 for both metrics.

rSS predictor MSA§ F1 P-value MCC P-value

PLMC† rMSA 0.648 * 0.646 *

rMSA (Nf) 0.641 5.29E-3 0.639 5.22E-3

rMSA (SCI) 0.589 4.97E-13 0.586 5.23E-13

RNAcmap 0.543 3.01E-22 0.539 3.34E-22

Infernal 0.402 1.97E-47 0.396 2.54E-47

nhmmer 0.214 1.15E-98 0.208 1.71E-98

blastn 0.040 1.78E-145 0.033 1.90E-145

RNAlien 0.024 4.34E-147 0.016 4.81E-147

R-scape rMSA 0.575 * 0.572 *

rMSA (Nf) 0.573 2.88E-1 0.570 2.88E-1

rMSA (SCI) 0.546 2.90E-5 0.542 2.90E-5

RNAcmap 0.500 1.50E-13 0.496 1.73E-13

Infernal 0.390 1.43E-35 0.386 1.97E-35

nhmmer 0.230 2.42E-83 0.226 7.66E-83

blastn 0.086 2.92E-122 0.080 5.65E-122

RNAlien 0.030 9.54E-130 0.028 2.37E-128

R-scape –RAFSp rMSA 0.561 * 0.558 *

rMSA (Nf) 0.559 2.78E-1 0.556 2.76E-1

rMSA (SCI) 0.543 3.06E-3 0.540 3.08E-3

RNAcmap 0.515 8.06E-7 0.511 8.23E-7

Infernal 0.462 5.39E-17 0.459 5.95E-17

nhmmer 0.275 8.73E-74 0.272 9.15E-74

blastn 0.215 8.34E-87 0.209 1.19E-86

RNAlien 0.063 7.47E-128 0.061 5.37E-127

* All p-values are calculated by one-tail t-test to check if rMSA is better (higher F1 and higher MCC) than the respective MSA

schema. P-values < 0.05 are in bold.
† Apart from canonical base pairs, a covariance analysis can also report other pairwise interactions, such as the coupling between

nucleotide pairs adjacent to each other in the sequence. To exclude these non-canonical interactions, the output of covariance

analysis is filtered by the following steps before calculating the accuracy: firstly, only Watson-Crick (A:U and G:C) and Wobble (G:U)

base pairs are included; secondly, the two nucleotides must be separated by at least 4 positions in the sequence; thirdly, if a base is

predicted to simultaneously paired to another two or more bases, only a single base pair with the best covariance score is reported.
§ Version number of all MSA and rSS prediction programs are listed in Table S3.
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Infernal, nhmmer and blastn in our benchmark to
understand the extent to which rMSA and
RNAcmap provide improvements over their
component methods.
The rMSA alignment from the current MSA

selection strategy where MSAs from different
stages are scored by Equation (1) results in a
small but consistent improvement in MSA quality,
with 1.1%, 0.3% and 0.4% higher rSS F1-score by
PLMC, R-scape and R-scape --RAFSp,
respectively, compared to an alternatively rMSA
implement where the highest Nf MSA is always
selected. On the other hand, the rMSA alignment
selected by SCI is significantly worse than the
current MSA selection strategy, with 9.1%. 5.0%
and 3.2% reductions in rSS F1-score by PLMC,
R-scape and R-scape --RAFSp, respectively,
where the p-values are all < 3.06E-3. These data
highlight the importance of MSA selection.
It appears that rMSA does not outperform

RNAcmap, Infernal or nhmmer for
thermodynamics-based rSS prediction by PETfold
and RNAalifold (Table S2). This is because, unlike
PLMC and R-scape, which can parse the deep
MSAs originally produced by different MSA
5

programs, PETfold and RNAalifold require an
aggressive filtering of input MSA (Text S4). After
this filtering procedure, the rMSA alignment has
lost 88.7%, on average, of its original effective
sequences, which is consistently higher than
RNAcmap, Infernal, nhmmer and blastn, which
lose 74.6%, 71.2%, 75.9%, and 66.7% of their
original effective sequences, respectively (Nf
column in Table S4). How to modify rMSA,
RNAalifold and PETfold to better leverage a
deeper alignment is a topic worthy of future
investigation, particularly given that the use of
more accurate PETfold rSS prediction can in turn
improves the quality of rMSA alignments
(Table S5).
Comparison of the rSS prediction performance by

different predictors using the same MSA generator
in Table 2 reveals two trends that are not in
complete agreement with previous studies. Firstly,
in our test of rMSA, R-scape is actually slightly
more accurate than R-scape --RAFSp, although
the latter was suggested by our previous study33

to produce more accurate rSS predictions under
certain constraints. Nonetheless, for all other MSA
generators tested, R-scape --RAFSp indeed results
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in better accuracy than R-scape. These discrepan-
cies are likely due to the higher Nf in rMSA align-
ments. When Nf is small (Nf < 22), there are twice
as many targets where R-scape --RAFSp outper-
forms R-scape than targets where R-scape is bet-
ter; but when Nf is big (Nf > 22), most targets
have R-scape outperforming R-scape --RAFSp
(Figure S3).
Additionally, for rMSA and RNAcmap, the global

covariance algorithm, PLMC, is respectively
shown to give 12.7% and 8.6% better rSS F1-
scores than the local covariance algorithm, R-
scape. This is consistent with the conclusions
from almost all previous studies31,36 on protein
covariance analysis, where global covariance
almost always outperforms local covariance algo-
rithms. Yet, it is in contradiction to the original R-
scape study,14 which concludes no advantage in
using a global covariance algorithm over the R-
scape local covariance algorithm. These differ-
ences in relative performance comparisons among
different MSA-based rSS predictors may be caused
by differences in MSA construction approaches
compared to the original R-scape study, as R-
scape indeed outperforms PLMC on shallower
MSAs generated by nhmmer and blastn.
Deeper MSAs are not automatically better for rSS

prediction. In fact, the rSS prediction by PLMC only
has a modest Pearson Correlation Coefficient of
0.55 to logarithm of Nf of rMSA alignment for our
benchmark targets (Figure S4). This is partially
explained by Figure S5: although the rSS
prediction accuracy initially improves with
increasing Nf when Nf is small, the accuracy starts
to plateau when Nf > 64. This is similar to what we
observed in our previous study for protein MSAs.1

rMSA for RNA long-range contact prediction

While it is evident that MSA is central to
covariance-based rSS prediction where all
statistics are derived only from the MSA, it is less
clear whether MSA is equally important for more
complicated machine learning based RNA
structure prediction tasks, where not all features
are from the MSA. Therefore, this section includes
another benchmark using RNAcontact,37 a deep
learning predictor of RNA tertiary contacts. In
RNA, rSS is related to but more narrowly defined
than contact, as the former usually only includes
canonical base pairs while the latter includes all
pairs of nucleotides with minimal atomic
distance < 8 �A.13,37 Similar to the previous study,37

contacts are considered only if they are long-range,
i.e. separated by� 24 nucleotides in the sequence.
The specific sequence separation of 24 for long-
range contact is used by many prior studies1,37–39

in covariance- and machine learning-based contact
prediction to define the set of contacts that are most
influential for tertiary structure folding. Similar to
evaluation of rSS, the accuracy of RNA contact pre-
diction is also evaluated by F1-score and MCC of
6

the top Lnlong contacts, where Lnlong is the number
of long-range contacts in the experimental struc-
ture. Four short targets (PDB IDs: 1et4 chain A,
2xdb chain G, 4ato chain G, 5kk5 chain B) are
excluded from this benchmark due to lack of long-
range contact in their experimental structures.
As shown in Table S6, although rMSA is not

specifically optimized for contact prediction, it
nonetheless is able to significantly outperform the
best third-party MSAs (Infernal) by 4.6% higher
F1-score. Overall, the differences between
different MSA schemes are smaller than those
shown in Table 2. This is mainly because the
deep neural network in RNAcontact can extract
rich information from very shallow alignments or
even the target sequence alone (“Single” in
Table 2), thereby making its accuracies less
dependent on MSAs.
Conclusions

We have developed rMSA, a free and open-
source package for generating high quality RNA
MSAs, which significantly improves MSA-based
rSS and contact prediction. Detailed analysis
showed that the advantage of rMSA lies in its
incremental MSA generation scheme that ensures
sufficient depth and coverage while preventing
redundant or unrelated sequencing populating
large MSAs.
We originally developed rMSA for the prediction

of RNA structural features such as rSS and
contacts, regardless of whether the structural
features are evolutionarily conserved. This is
reflected in several technical details underlying the
implementation of rMSA, such as the use of
thermodynamics-based single-sequence rSS
prediction (rather than covariance-based
prediction), as well as the lack of a built-in
subroutine for removal of potential pseudogenes
through species-based filtering. An MSA method
dedicated to evolutionarily conserved rSS
detection still requires further development.
One limitation of rMSA is that it only searches the

standard RNAcentral and nt databases, without
utilizing metagenome sequence databases. Given
the successful application of metagenome
database search in protein MSA construction,1–3 it
should be expected that a future version of rMSA
incorporating metagenome sequences should
result in a further improvement in MSA quality.
Materials and Methods

Details for each of the five stages in rMSA are
explained below. In Stage 1, sequence-sequence
alignment is performed by blastn to search the
target RNA against RNAcentral and nt databases
to obtain initial blast hits. These hits are re-aligned
by nhmmer40 to construct an initial alignment. Both
blastn and nhmmer are used because the former is
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faster while the latter generates alignments with
more aligned positions, which is helpful for making
the initial alignment. This initial alignment is con-
verted into a CM using the cmbuild/cmcalibrate
tools of Infernal. Since a CM cannot be constructed
without the pseudoknot-free rSS of a target
sequence, a single-sequence-based rSS prediction
is performed by RNAfold and fed into cmbuild. The
CM is used by the cmsearch program of Infernal to
perform a profile-sequence search through the
blastn hits to derive the Stage 1 MSA.
In Stage 2 and 3, CM from Stage 1 is searched by

cmsearch against the RNAcentral and nt
databases, respectively. The raw cmsearch hits
are combined with hits from previous stages and
re-aligned into the Stage 2 and 3 MSAs by
cmsearch.
In Stage 4, the target sequence is searched by

blastn against the RNAcentral database. In Stage
5, the target is searched by blastn against the nt
database. The two blastn MSAs from the two
searches are separately converted into another
two CMs (denoted CM 2 and CM 3, respectively),
without nhmmer re-alignment. This avoids missing
blastn hits that are not included in nhmmer re-
alignment, thereby complementing the nhmmer-
based CM used in Stage 1 to 3. When building the
CMs, the same rSS predicted by RNAfold is used
in Stages 1, 4 and 5. CM 2 and CM 3 are
searched by cmsearch through sequences
collected from the first three stages to obtain
Stage 4 MSA and Stage 5 MSA, respectively. To
avoid constructing unnecessarily large MSAs,
Stage 2 to 5 are only performed if the previous
stage has a length-normalized number of effective
sequences (Nf) < 128. Moreover, Stage 2 to
Stage 5 always first check if the MSA derived from
the smaller RNAcentral database is sufficiently
large before attempting to search the much larger
nt database, thereby further avoiding
unnecessarily large MSAs. While the Nf cutoff of
128 is from our previous study1 for protein MSAs,
it also works well for RNA MSAs in this study.
The final MSA is selected from among the

generated MSAs by a covariance-based MSA
selection score derived from the Pseudo-
Likelihood Maximization algorithm implemented by
the PLMC program.13 To this end, all pairs of
nucleotides are ranked in descending order of
PLMC covariance scores. Pairs of nucleotides are
excluded from consideration if they cannot form
canonical base pairs, i.e. not Watson-Crick (A:U
and G:C) or Wobble (G:U) base pairs, or separated
by less than 4 positions in the sequence. For the
remaining base pairs, the top |BP| base pairs are
used to calculate the MSA selection score, where
BP is the set of all base pairs predicted by the
single-sequence-based rSS predictor (RNAfold) in
Stage 1. The MSA score is defined as:
7

MSAscore ¼
X BPj j

p¼1
2 � I p�BP½ � � 1ð Þ � plmcp ð1Þ

Here, p is the ranking of base pairs in descending
order of PLMC score; plmcp is the PLMC score of
the p-th base pair and it is positively correlated to
base pair probability (Figure S6); the Iverson
bracket operator I[ ] equals to 1 if p-th base pairs
in PLMC prediction is also within the set of single-
sequence rSS prediction, or 0 otherwise. The
MSA score measures the agreement between
single-sequence-based and MSA-based rSS
predictions. The motivation behind this score is
that MSAs with higher quality (i.e., more
homologous sequences, greater diversities, and
less alignment errors) should result in stronger
covariance signals and more sensitive prediction
of base pairings and contacts, as was found by
our recent studies on protein MSA generations.41–
42 The MSA with the highest MSA score among
the five MSAs of the five stages is selected as the
final rMSA alignment.
All five stages of rMSA uses CM constructed with

rSS predicted by RNAfold, which may be less
accurate than rSS predicted by deep learning4,34

or determined by chemical probing such as
SHAPE-MaP.26 Although more accurate rSS may
result in a higher quality final MSA, we chooseRNA-
fold to be consistent with previous studies.6,43

Meanwhile, rMSA provides an option for users to
specify their own secondary structure for the input
RNA.
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