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Tables 

 
Table S1. Performance of the control pipelines against PEPPI in the balanced benchmark.  P-

values (calculated by 1000-iteration bootstrapping of the distribution of differences in performance 

between methods) are presented in parentheses. 

 

 AUROC Avg. Precision Max MCC 

PEPPI 0.879 0.895 0.654 

PRISM 0.544 (3.7e-80) 0.511 (6.2e-115) 0.373 (6.9e-30) 

SPRINT 0.841 (5.3e-7) 0.853 (6.0e-5) 0.632 (5.6e-2) 

D-SCRIPT 0.800 (1.8e-15) 0.839 (7.3e-8) 0.579 (8.9e-6) 

PIPR 0.738 (4.2e-30) 0.760 (2.7e-24) 0.469 (5.3e-18) 

 

Table S2. Performance of the control pipelines against PEPPI in the unbalanced benchmark.  P-

values (calculated by 1000-iteration bootstrapping of the performance difference distribution) are 

presented in parentheses. 

 

 Avg. Precision Max MCC 

PEPPI 0.829 0.799 

SPRINT 0.696 (9.3e-4) 0.729 (1.8e-2) 

D-SCRIPT 0.454 (3.6e-15) 0.512 (5.6e-11) 

PIPR 0.122 (4.7e-95) 0.287 (2.5e-45) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Methods 

 
S1.1 PPI prediction by SPRING threading (“SPRING”/”SPRINGNEG” module) 

SPRING [1] is a program which detects a template dimer structure given a pair of query 

sequences.  However, this program has been altered from its original published state in order to 

perform better on the task of PPI classification, and therefore, we summarize the new procedure 

here.  First, the pair of query sequences are threaded monomerically by HHsearch [2] through a 

combination dimer and non-interaction structure library in order to identify monomer structure 

templates which fit each respective query sequence.  Each template structure is scored by the raw 

alignment score for each query-template alignment; these scores are then Z-normalized by the 

mean and standard deviation of the top 20,000 templates.  A similarity model is constructed for 

each query chain according to the highest scoring query-template alignment.  The top 5,000 

template structures (by Z-score) for each of the two chains are paired all-by-all in search of an 

identical pair of chain IDs in the dimer structure library for SPRING (or the negative structure 

library for SPRINGNEG), where each identified dimer template pair is scored by the minimum of 

the two chains’ respective monomeric Z-scores.  Once dimer template pairs have been identified, 

a dimeric model is constructed for the top 100 dimer template pairs by TM-align [3] superposition 

of the similarity model of each chain onto the dimeric template structure.  Each model is then 

scored according to the SPRINGscore: 

𝑆𝑃𝑅𝐼𝑁𝐺𝑠𝑐𝑜𝑟𝑒 = 𝑍 + 𝑤1𝑇𝑀 + 𝑤2𝐷𝑐𝑜𝑚𝑝𝑙𝑒𝑥                                           (1) 

where Z is the Z-score of the dimer template, TM is the minimum structure similarity from 

superposition, Dcomplex is the model interface energy as calculated by a modified form of 

DCOMPLEX [4] which only considers C⍺ atoms, and w1 and w2 are weights with value 4.0 and -

0.1 (negative because a lower DCOMPLEX score is more favorable), respectively for SPRING, 



or 7.6 and 0.0, respectively for SPRINGNEG.  The values of these weights were derived on the 

optimization of 5-fold cross validation performance against a gold standard interaction training set 

(see “Pipeline training and benchmarking”).  The score used in the final classifier is the 

SPRINGscore of the top-ranked dimer model. 

In order to construct the database of template dimer structures, a list of all current Protein Data 

Bank (PDB) [5] entries was obtained using the database’s RESTful API.  For each entry containing 

at least one protein chain, all “biomolecular assembly” structures were collected.  From each 

biomolecular assembly, pairs of interacting proteins were extracted if both protein chains were at 

least 30 amino acids long (thus excluding protein-peptide interactions) and if there existed at least 

10 interchain contacts (i.e., if there exist at least 10 interchain pairs of C⍺ atoms whose distance is 

less than 8Å).  Each pair is then split into monomeric chains and clustered at 70% sequence identity 

using CD-HIT [6]. Non-redundant protein pairs are derived from these clusters by pairing each 

cluster of monomers and extracting one pair at random that exists between the members of each 

cluster.  Additional pairs are extracted if they are structurally non-redundant to the already 

extracted pairs, i.e. if the new pair has a TM-score < 0.5 by MM-align [7].  Clusters are also paired 

against themselves to allow for the extraction of homodimeric structures.  This procedure resulted 

in a total of 48,591 non-redundant dimer template structures, constructed from 83,765 monomer 

chains.  In order to make this structure database threadable, an HMM was constructed for each 

sequence by HHblits [2] using a February 2016 release of the UniProtKB database [8] clustered at 

20% sequence identity.  The resulting HMM was combined with secondary structure information 

as determined by DSSP and formatted to be threadable by HHsearch.  In addition to the dimer 

structure library, a negative structure library was constructed from the biomolecular assembly 

structures, consisting of protein pairs which were found to be in the same complex, but not in 



physical contact (i.e., no inter-atom distance between C⍺ atoms on differing chains were <8Å 

apart).  These pairs were filtered for non-redundancy in a similar manner to the dimer structure 

library; however, they were filtered to be non-redundant not only to each other, but also to the 

original dimer structure library.  This way, the negative structure library only consists of pairs 

which were never shown to interact in any PDB structure.  This library consists of 24,568 pairs 

constructed from 10,708 monomer chains. 

In many solved protein complex structures, only the domains which form the interface are 

present in the structure due to size limitations of the structure solving method.  In order to keep 

this phenomenon from hindering template identification, threading-based domain division of the 

query is implemented in PEPPI (Figure S1).  This procedure collects all query-template alignments 

above a given Z-score threshold, 8.5, and counts how many of them consist of a large gapped 

region (>80 AA in length) on one or both termini of the query.  If more than half of the total 

alignments contain a gapped region, the protein is split in two at the optimal domain boundary, 

and the two domains are analyzed recursively through the same procedure.  Recursion stops when 

either a sequence is found to not have a sufficient proportion of gapped alignments (i.e., is single 

domain), or to have less than 10 alignments above the Z-score threshold (i.e., is a “hard” threading 

target).  The optimal domain boundary is defined as the average of positions at which the gap 

region ends (or starts) if only N-terminal (or C-terminal) gaps were found.  If both N- and C-

terminal gapped alignments are found, each N-terminal boundary is paired with each C-terminal 

boundary, the midpoint between each pair is determined, and the optimal boundary is defined as 

the average of these midpoints.  For a given pair of query sequences, each domain from one 

sequence is paired with each domain of the other sequence, and SPRING analysis is done on each 



domain-domain pair.  The highest score derived from domain-domain pairing is kept as the score 

for the entire query pair. 

 
Figure S1. An illustration of the domain division procedure for structure-based interology.  In this 

figure, query sequence A (QA) is divided into domains according to the domain boundary derived 

from the alignments of its threading templates.  After domain division, all domains of sequence A 

are paired with the single-domain query sequence B (QB) and analyzed individually. 

 

 

S1.2 PPI prediction by sequence interology (“SEQ” module) 

The “SEQ” module of PEPPI implements a simple process to identify similar complexes 

through sequence similarity.  The first step of this module is to split apart the two chains of the 

query and use BLAST [9] to search them through a database of single chain sequences taken from 

PPIs. The dimer sequence library was constructed from interactions taken from the PSICQUIC 

service [10].  This service was queried using the “MI:0407 (direct interaction)” term (from the 



molecular interaction ontology [11]) and filtered to retrieve a set of interactions which were 

annotated to be direct, physical interactions.  First, interactions which were not strictly protein-

protein interactions were filtered out, including protein-ligand, protein-nucleotide, and protein-

complex interactions.  Second, amino acid sequences were retrieved for each of the interactions, 

as they are only presented in PSICQUIC as a set of database identifiers, not as definitive amino 

acid sequences.  Most of this was accomplished using Uniprot’s ID retrieval tool, but sequences 

were taken directly from the database itself when possible.  Finally, the sequences of the dimer 

structure library were also added to the dimer sequence library.  The final dimer sequence library 

consists of 515,058 interactions in total.  It should be noted that this database is redundant, as the 

same interaction can be represented in multiple databases within PSICQUIC using distinct 

identifiers.  The result of the BLAST search step is a set of single-chain hits sorted by sequence 

identity to the query.  In order to translate this single chain similarity into dimeric similarity, dimers 

are retrieved from the sets of monomeric hits.  The overall score for the dimer is the harmonic 

mean of the two respective monomeric sequence identities. 

 

S1.3 PPI Prediction by non-similarity features (“CT”/“STRING”) 

In order to bolster the pipeline’s predictions in the absence of detected sequence or threading 

hits, PEPPI also uses a neural network model based on the conjoint triad (CT) feature [12].  This 

feature translates a pair of amino acid sequences into a vector based on the frequency of amino 

acid triads in each of the two sequences.  First, each amino acid of the input sequence is binned 

into one of 7 bins based on properties such as volume and dipoles, leading to a total of 7*7*7=343 

possible different triplets.  Then, a sliding window of length 3 is applied across the entire input 

sequence, counting each occurrence of amino acid triads, thus populating the conjoint triad vector 



for a single sequence. After normalizing the raw counts to constrain triad to be between zero and 

one, the two sequences’ 343-entry vectors are concatenated into one 686-entry vector, which is 

then used as input in the neural network.  The neural network is implemented as a Multi-Layer 

Perceptron Classifier in the scikit-learn package [13], with a single hidden layer of size 1000.  The 

model was trained using vectors generated from sequences of 27,967 interacting pairs from the 

dimer structure dataset detailed in the SPRING module, as well as an equal number of randomly 

paired chains.  These 27,967 pairs were selected such that they were non-redundant to the test set 

(see section S1.4).  The final interaction probability output from this neural network is used in the 

consensus classifier. 

While the primary focus of this pipeline is to predict direct, physical interactions, functional 

association data can also assist in classification.  This functional association data comes from the 

interaction scores in the STRING v11 database [14].  In particular, the scores used are gene 

neighborhood (how proximal two genes are in the genome sequence), gene fusion/fission (if other 

organisms have orthologs of the interacting proteins which have fused into the same polypeptide), 

co-expression (correlation of gene expression levels across different cell states), and co-occurrence 

(occurrence of orthologs for each protein in other organisms, regardless of whether they’re known 

to interact).  To retrieve these four scores, the query proteins are monomerically searched through 

the sequences of the STRING database using BLAST, and any hits with >90% sequence identity 

are kept.  The hits for each chain are then paired against each other and searched through STRING 

links for a corresponding entry; the four corresponding scores for the first discovered database 

entry are passed to the classifier.  If no hit is found, then missing values are passed to the classifier.  

It should be noted that the STRING database only contains information for intra-species 

interactions and does not provide any information on inter-species interactions, such as those in 



the SARS-CoV-2/Human dataset. PEPPI therefore operates without the STRING module for the 

SARS-Cov-2/Human application presented in this manuscript. 

 

S1.4 Pipeline training and benchmarking 

In order to evaluate the interaction likelihood based on the calculated score x for a given 

module in Figure 1, the x value is compared against the scores attained on training set consisting 

of 800 non-redundant interactions from the IntAct [15] database (annotated as “direct interaction” 

and with an MI-score of at least 0.7), and 800 non-redundant non-interactions from the Negatome 

2.0 [16] database.  From the scores of the interaction and non-interaction sets for the given module, 

two respective probability distributions were created by Gaussian kernel density estimation.  From 

these reference distributions, the likelihood of interaction is expressed as the log-likelihood ratio: 

𝑙𝑜𝑔(𝐿𝑅) = 𝑙𝑜𝑔(𝑝(𝑥|𝐼)) − 𝑙𝑜𝑔(𝑝(𝑥|𝑁𝐼))                                        (2) 

where p(x|I) and p(x|NI) are the conditional probabilities at the score x in the interacting and non-

interacting reference distributions, respectively.  The overall likelihood for a given query pair is 

the sum of log-likelihoods for all separate modules. 

The PEPPI pipeline was then tested on an independent test set consisting of 798 pairs from the 

dimer structure library, and 798 pairs from the negative structure library, both of which are non-

redundant to the pairs in the training set (<50% sequence identity).  In order to assess the 

performance of the pipeline fairly, several non-redundancy measures have been put in place for 

the benchmark.  For the SPRING and SEQ modules of PEPPI and for PRISM, any single-chain 

templates which have a sequence identity >50% to the query were removed from consideration.  

In order to ensure the test set was non-redundant to the training sets of competing programs and 

that this training set is appropriate for species-agnostic physical interaction prediction, we 



constructed a custom training set of 27,967 pairs from the dimer structure library such that they 

had <50% sequence identity to the test set pairs and an equal number of non-interacting pairs 

randomly pairing chains from this interaction set.  This training set was subsequently used for 

training SPRINT, PIPR, D-SCRIPT, and the CT modules of PEPPI.  Filtering criteria present in 

PRISM were disabled as the combination of these criteria and our own imposed template non-

redundancy rules resulted in a high incidence of no templates being identified.  75 layers were 

used for PIPR instead of the default 50, as raising the layer number improved 5-fold cross 

validation performance on the provided training set. D-SCRIPT was trained according to program 

defaults. 
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