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INTRODUCTION

The ability to design proteins with enhanced thermo-stability is impor-

tant both theoretically and practically.1–8 Protein-based drugs have become

increasingly attractive because of their high efficiency and low side effects.

Unfortunately, many native proteins are only marginally stable under both

normal physiological and storage conditions. Drugs based on proteins are

often susceptible to physical and chemical degradation that affects their

potency and safety during manufacturing, transportation, and storage

processes.9 Therefore enhancing the thermo-stability of a protein drug can-

didate can be a decisive factor in whether it eventually becomes a market-

able pharmaceutical. Enzymes with enhanced stability are also useful in

many biotechnological applications. Such enzymes allow catalyzed reactions

to be performed at higher temperature, which can lead to more efficient

industrial processes because chemical reactions are intrinsically faster at

higher temperature.7,8

Computational methods for designing proteins with enhanced thermo-

stability are attractive due to their potential low cost and time-saving prop-

erties over current experimental approaches.10 In general, these methods

attempt to define general principles of protein thermo-stability and apply

them to rationally design novel proteins. Despite extensive studies in the

past several years1–3,5; however, a general strategy for stabilizing proteins

remains elusive.11 This is primarily due to the diverse mechanisms con-

tributing to protein stabilization.12 Thus effective and robust computa-

tional algorithms for designing thermo-stable proteins are still in critical

demand.

Thermophiles are organisms which live at elevated temperatures as high

as 1138C.5 Thus, the proteins produced by thermophiles (thermophilic

proteins or TPs) are intrinsically more thermo-stable than their mesophilic

counterparts (MPs). Consequently one common approach to developing

thermo-stable proteins is to perform comparative studies of the sequences

and/or structures of TPs and their MPs, in the hope of discovering struc-

tural patterns of protein thermo-stabilization.13–21 For example, Haney

et al. found an increased level of charged residues in TPs22 and Glyakina

et al. found that more closely packing of the external, water-accessible resi-
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ABSTRACT

Designing proteins with enhanced

thermo-stability has been a main focus of

protein engineering because of its theoret-

ical and practical significance. Despite

extensive studies in the past years, a gen-

eral strategy for stabilizing proteins still

remains elusive. Thus effective and robust

computational algorithms for designing

thermo-stable proteins are in critical

demand. Here we report PROTS, a

sequential and structural four-residue

fragment based protein thermo-stability

potential. PROTS is derived from a non-

redundant representative collection of

thousands of thermophilic and mesophilic

protein structures and a large set of point

mutations with experimentally determined

changes of melting temperatures. To the

best of our knowledge, PROTS is the first

protein stability predictor based on inte-

grated analysis and mining of these two

types of data. Besides conventional cross

validation and blind testing, we introduce

hypothetical reverse mutations as a means

of testing the robustness of protein

thermo-stability predictors. In all tests,

PROTS demonstrates the ability to reli-

ably predict mutation induced thermo-

stability changes as well as classify

thermophilic and mesophilic proteins. In

addition, this white-box predictor allows

easy interpretation of the factors that

influence mutation induced protein stabil-

ity changes at the residue level.
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dues.23 These comparative studies have revealed a num-

ber of general trends that produce protein stabilization.

It is challenging, however, to identify and apply suitable

rules to predict favorable mutations that may enhance

the thermo-stability for each individual protein.

Another approach is to use force-fields and potentials,

either general purpose ones or those specifically devel-

oped for predicting protein stability, to predict muta-

tion induced thermo-stability changes. For example,

FoldX provides a quantitative estimation of the contri-

butions of specific interaction to protein stability and

has been benchmark-tested on a large set of point

mutations.24 Gu et al. developed eScape for analyzing

the protein energy lanscape of a protein sequence and

showed its correlation with protein stability across pro-

teomes between mesophiles and thermophiles.25,26

Other notable approaches include LSE,27 EGAD,28

DFIRE,29 and ERIS.30 ROSSETA, a suite of software

programs well-known for its use in protein structure

predictions, also has the capacity to make thermostabil-

ity predictions.2

In recent years, data mining technologies employing

various machine learning algorithms have increasingly

attracted attention. Algorithms such as support vector

machines,31–34 neuronal networks,35 or multiple regres-

sion and classification techniques,36,37 have been used

for predicting protein stability changes induced by muta-

tions. The general procedure of machine learning

approaches is to train predictive models based on avail-

able experimental data using features (properties) such as

substitution types, secondary structure, solvent accessibil-

ities, and the presence of neighboring residues. These

approaches hold great promises because they may be

used to discover subtle patterns governing mutation

induced stability changes and protein stability in general.

The drawback associated with these types of approaches

is also obvious because these models were trained and

tested on mutations from a relatively small set of pro-

teins due to the lack of availability of experimental data

at the time of their construction.30 For example, Cheng

et al. developed a support vector machine predictive

model based on 1023 mutations in 36 proteins.32 This

number is rather small if one considers the fact that there

are 380 different types of single mutations. As Dokholyan

et al. pointed out, ‘‘The improvement of the prediction

accuracy relies on the available experimental stability

data for parameter trainings. It is questionable whether

parameters obtained from these trainings are transferable

to other protein studies".30 Thus the robustness of these

methods needs to be further validated on larger datasets.

Here we report PROTS, a novel sequential and spatial

fragment based PROtein Thermo-Stability potential,

which integrates TP/MP comparative analysis and experi-

mental mutation data mining. We create a comprehen-

sive and non-redundant set of high-resolution protein

structures of TPs and MPs. Fragments consisting of four

amino acid residues were chosen as the atomic units for

determining the overall thermo-stability of proteins. The

frequencies of sequential tetrapeptides and spatial Delau-

nay tetrahedrons (DT)38 in TPs, MPs, and protein

mutants are analyzed, and a lookup table is created for

calculating the PROTS potentials of proteins and their

mutants. We suggest that these two types of data can be

integrated because HP/MP orthologs are essentially

equivalent to mutants of each other.

Structural information can generally improve the per-

formance of protein property prediction algorithms. The

vast majority of proteins, however, lack solved structures.

Fortunately, current state-of-the-art protein homologous

modeling algorithms are able to produce practically

useful structural models.39 In this work, we test the

PROTS potential in homolog models, created using

the I-TASSER algorithm,40–42 of 540 pairs of TP/MP

orthologs.43

In this work, we introduce hypothetical reversed muta-

tions to test the robustness of computational methods

for predicting protein stability changes upon mutations.

Usually protein stability changes upon mutations are

experimentally measured through changes in the melting

temperature (DTm) or alteration of folding free energies

(DDG) between a wild type protein and its mutant.

Existing protein stability predictors use one or the other

as the metric for stability changes. Both metrics are ther-

modynamic parameters and thus state functions.44

Therefore, the DTm of a mutation from a wild type pro-

tein to its mutant (DT
mWt!Mu) equals the negated DTm

of a hypothetical reversed mutation (from the mutant to

the wild type protein, DTmMu!Wt):

DTmWt!Mu ¼ �DTmMu!Wt ð1Þ

DDGWt!Mu ¼ �DDGMu!Wt ð2Þ

A robust predictor should treat DTm and DDDG as

thermodynamic parameters and be able to achieve identi-

cal or at least similar performance on hypothetical

reversed mutations to the forward mutations. Our study

described below indicates that these tested machine

learning algorithms are not robust in such a test.

In the following sections, we describe the applications

of the potential to predicting stability change upon

mutations, as well as discriminating MP/TP native struc-

tures and homolog models. We will also present a com-

parison of PROTS to several other relevant potentials or

algorithms, in the classification of thermophilic/meso-

philic proteins and the prediction of protein stability

changes upon mutations. In all cases, PROTS compares

favorably. We describe the procedure of collecting train-

ing and test datasets, and then the construction of the

lookup table used for computing the PROTS potential in

the Experimental Procedures.
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MATERIALS AND METHODS

Nonredundant TP/MP native structures

In this study, we use a collection of nonredundant

1020 TP and 4742 MP structures that was previous used

in developing distance-dependent statistical potentials for

discriminating TPs and MPs and the procedure was

described previously.45 Table I in Text S1 provides a

complete list of the organisms and distribution of these

proteins in each organism.

Structural modeling of 540 TP/MP ortholog
pairs

Structural models of 540 TP/MP ortholog pairs, which

did not have structures in the PDB library, are predicted

using I-TASSER.40–42 These ortholog pairs were previ-

ously used in sequence-based TP/MP classification and

relative thermostability prediction.43 I-TASSER is a hier-

archical approach to both template-based and ab initio

modeling of protein structures, and it was ranked as the

best methods for automated protein structure prediction

in communitywide blind experiments, CASP7 and

CASP8.46,47 For a given target sequence, I-TASSER first

identifies template structure and sequence-structure

alignments by LOMETS, a locally installed meta-thread-

ing algorithm including 9 start-of-the-art threading pro-

grams.48 Continuous fragments of length >5 residues

are then used to reassemble the global topology of a pro-

tein under the guide of consensus restraints from multi-

ple threading templates. The structural assembly is per-

formed by replica exchange Monte Carlo simulations.

The simulation trajectory decoys are then clustered to

identify lowest free energy Ca-represented models using

SPICKER.49 Finally, all-atom models are constructed

based on the reduced Ca model using REMO through

optimizing the hydrogen-bonding network.50

The accuracy of the I-TASSER models can be reliably

estimated by the confidence score (C-score) which is a

combination of the Z-score of the threading templates in

LOMETS and the structure density of SPICKER. In a

recent large benchmark study,51 it was shown that the

Pearson correlation coefficient of C-score and the TM-

score (a measure of structural similarity to the native

structure52) is 0.91. For these 540 TP/MP ortholog pairs,

there are 97% of cases where the C-score is higher than -

1.5, a cutoff for I-TASSER models of correct topology;

there are 99% of cases where there is at least one thread-

ing template which has the Z-score higher than the

inherent Z-score cutoff (meaning the template is a signif-

icant hit in threading). Thus, the majority of I-TASSER

models are anticipated to have correct topology, which

guarantees the quality of corresponding structure-based

analyses.

Mutation datasets

We collect a set of point mutations with known melt-

ing temperatures (Tm) from the Protherm database.53

Mutations with absolute DTm less than 18C are excluded

because such small changes may not be statistically sig-

nificant.54 For mutations with multiple DTm values, we

use the median DTm of these mutations if the sign of all

DTm values is consistent and excluded them otherwise.

The final dataset includes 1146 mutants from 100 differ-

ent wild type proteins. These proteins are clustered using

BLASTClust55 with a sequence identity threshold of

30%. We obtain 84 distinct clusters and then split them

into five groups, each with approximately the same num-

ber of mutations, for cross validation. In the cross valida-

tion test, mutations in four out of five groups are used

for training and the mutations in the remaining group

are used for testing. This procedure is repeated four

more times until every mutation is used once.

We also obtained a set of point mutations with known

free energy changes (DDG) from the literature for testing

purposes.11 This dataset contains 2156 single-point

mutations from 84 wild type proteins and was previously

used in a comparative study of different approaches to

predict mutation induced stability changes.11

In addition, a set of wild type proteins and their

mutants, all with known structures, were collected from

the Protherm database. We only consider structure pairs

with known DDG of the mutations with resolution of

protein structures better than 2.2 Å. There are 155 struc-

ture pairs, including 140 for single mutations, originated

from nine different wild type proteins in the dataset

(Table II in Text S1).

Hypothetical reversed mutations as testing
datasets

Currently available mutation induced stability change

data, especially those available in the Protherm data-

base,53 have been widely used in protein stability predic-

tion algorithm development. Therefore using this data to

test existing algorithms may not provide an accurate test

of performance because of the potential overfitting prob-

lem. In this study we adopt a novel approach to con-

struct testing datasets by using hypothetical reversed

mutations based on the fact that the melting temperature

and free energy are thermodynamic state functions [Eqs.

(1,2)].

Secondary structure and solvent
accessibility assignment

We use DSSP56 to assign the secondary structure states

and solvent accessible status of all residues in proteins.

Each residue is assigned to one of the three classes of sec-

ondary structure (helix/strand/coil). We use three levels

of solvent accessibility: buried, intermediate, and exposed

PROTS: A Protein Thermo-Stability Potential
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residues. The solvent accessible area ratio (normalized by

the maximum solvent accessible area of each amino acid)

of a buried residue is less than 0.25 and an exposed resi-

due is larger than 0.5. All others are assigned as interme-

diate residues.

PROTS

Two types of four-residue fragments in proteins are

used to calculate the PROTS potential. The first type

includes all 204 sequential tetrapeptides (abbreviated as

SEQ), the full permutation of four amino acids. The

other comprises the 8855 spatial DTs,38 the exhaustive

combination of four amino acids.

All DTs are grouped into three categories according

to the number of the continuously sequential residues

in the DTs. Type D43 contains the DTs formed by at

least three continuous residues. Type D2 contains at

least one two-continuous-residues motif but not

extending to three continuous residues. Type D1 is

formed by four non-neighboring residues.38,57,58 We

only include the DTs with maximal edge equal or less

than 12 Å.59

Since the structures of mutants are usually unavailable,

we assume that point mutations do not cause significant

conformational changes and therefore the structures of

mutants are created by simply replacing the wild type

residues with mutated residues.

Each sequential fragment in PROTS has 13 features

and each spatial fragment has 7 DT features. The 13 se-

quential features include seven potential terms [calculated

by Eq. (6)] including dS(occurrence, Wi), dS(helix, Wi),

dS(strand, Wi), dS(coil, Wi), dS(expose, Wi), dS(bury,

Wi), dS(intermediate, Wi), and six propensity terms

including dD(helix, Wi), dD(strand, Wi), dD(coil, Wi),

dD(expose, Wi), dD(bury, Wi), and dD(intermediate,

Wi). The 7 DT features include dS(occurrence_DT, Wi),

dS(D43, Wi), dS(D2, Wi), dS(D1, Wi) and the propensity

terms dD(D43, Wi), dD(D2, Wi) and dD(D1, Wi).

The occurrence probability of a given structural feature

K (e.g. helix, strand, coil) for a fragment Wi in a given

training dataset X, PX(K, Wi), is calculated using Eq. (3):

PXðK;WiÞ ¼
NXðK;WiÞP
i NXðK;WiÞ

ð3Þ

Here i runs over all possible four-residue fragments and

NX(K, Wi) is the number of fragments Wi for a feature K

in a given dataset X. PX(occurrence, Wi) is the occurrence

probability of the fragment Wi in the dataset X. The

propensity for the Wi in the structure state indicated by

feature K is defined as

DXðK;WiÞ ¼
PXðK;WiÞ

PXðoccurrence;WiÞ
ð4Þ

We also calculate the Shannon entropy of all fragments

defined as

SXðK;WiÞ ¼ �PXðK;WiÞ lnPXðK;WiÞ ð5Þ

The potential contribution of feature K of a fragment

Wi, dS(K, Wi) is defined as:

dSðK;WiÞ ¼ STðK;WiÞ � SMðK;WiÞ ð6Þ

Here T and M are the sets of TPs and MPs, respectively.

Using Eq. (6), we calculate the potential contributions of

all features of all fragments from native protein structures.

Similarly, we can calculate the propensity difference dD(K,

Wi). The Shannon entropy is not used for propensities

because they distribute over a small number of structural

features while the four-residue fragments are distributed

over a large number of types (>103).

TP and MP orthologs are essentially mutants with mul-

tiple mutations of each other. Thus in principle TP/MP

and mutation data are equivalent. We classify all fragments

involved in mutations into stabilizing or destabilizing frag-

ments according to the thermo-stability changes caused by

the mutations. The stabilizing (ST) fragments are those

found in mutants in stabilizing mutations or from wild

type proteins in destabilizing mutations. The destabilizing

(DE) fragments are from mutants in destabilizing muta-

tions or from wild type proteins in stabilizing mutations.

The Eq. (6) is revised to

dSðK;WiÞ ¼ STðK;WiÞ � SMðK;WiÞ þ dSTðWiÞSTðKÞ
� dDEðWiÞSMðKÞ ð7Þ

Here the first two terms are derived from native TP and

MP structures and the last two are calculated from the

point mutation dataset. ST(K) and SM(K) are the potential

terms corresponding to the most popular four-residue

fragments from TPs and MPs, respectively. The factors

dST(Wi) and dDE(Wi) are used to address the thermo-

stability preference of fragments based on the point muta-

tion dataset:

dSTðWiÞ ¼ nST;MuðWiÞ þ nDE;WtðWiÞP
nðWiÞ

and

dDEðWiÞ ¼ nST;WtðWiÞ þ nDE;MuðWiÞP
nðWiÞ

ð8Þ

Here, the denominator is the total number of occur-

rences of a given fragment in the training dataset, Wt and

Mu represent wild type proteins and mutants, respectively.

Y. Li et al.
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The thermo-stability potential P for a given protein is

calculated using:

P ¼ � 1

L

�X
i

X
K

aKdSðK;WiÞ

þ
X
i

X
K

bKdDðK;WiÞ
�

ð9Þ

where L is the number of residues in the protein, i runs

over all possible sequential and DT spatial fragments, and

K includes all 13 sequential and/or 7 DT features.

Since the stability change equals the relative stability dif-

ference between mutants and their wild type proteins, the

PROTS potential change of a mutation can be calculated by

dP ¼ PMu � PWt ð10Þ

The weights aK and bK, the relative contributions of var-

ious terms, for the PROTS potential are optimized through

maximizing the Pearson correlation coefficient between

the predicted stability change DP and the experimental

observed DTm values based on mutations in the training

set. The correlation coefficient R is defined as

R ¼
P ðDS�hDSiÞðDTm�hDTmiÞ
sqrtfVarðDSÞVarðDTmÞg ð11Þ

where the numerator is a summation over all mutations in

the training dataset, h i and Var( ) are the mean values and

the variance of the variable enclosed.

The PROTS potential can be used to predict thermo-

stability changes whether the protein structure is available

or not. All 20 features are used for proteins with struc-

tures while only 13 sequential features are used without

structures (PROTS_SEQ).

Algorithms used for comparison

To evaluate the performance of PROTS, we compare it

to several existing state-of-the-art algorithms for predict-

ing mutation induced thermo-stability changes. FoldX

(version 3.0 beta3) is a quantitative estimate of the contri-

butions of interactions to protein stability with a bench-

mark test on a large set of point mutations.24 LSE is a sta-

tistical local structure entropy derived from representative

protein domains, which has demonstrated strong correla-

tion with protein thermostability.27 MUpro is a support

vector machine (SVM) based predictor at sequence level

for the variation of folding free energy (DDG) upon point

mutations.32 I-Mutant2.0 is a SVM based predictor using

structure and sequence information for DDG prediction.31

EGAD is a force filed based empirical approach to calculate

protein stability with rotamer swapping on a fixed back-

bone scaffold which was shown reliable predictions for

more than 1500 mutations.28

Performance metrics

The discrimination of thermophilic/mesophilic pro-

teins and stabilized/destabilized mutations can be

regarded as a binary classification problem. We generate

the receiver operating characteristic (ROC) curve accord-

ing to the predicted potentials for TPs and MPs, or the

potential difference between wild type proteins and their

mutants. ROC is a plot of the true-positive ratio (sensi-

tivity) against the false-positive ratio (1–specificity). The

area under an ROC curve (AUC) represents the trade-off

between sensitivity and specificity. The accuracy of the

classification defined as

ACC ¼ TPþ TN

TPþ TNþ FPþ FN
ð12Þ

We calculate the accuracy at a fixed specificity of 0.80

so that we can directly compare the accuracies of the dif-

ferent models. In this equation, TP, TN, FP, FN stand for

true positive, true negative, false positive, and false nega-

tive, respectively. A true case represents the class of a

protein has been correctly identified. A positive case

represents the class of TPs or stabilizing mutations.

We also perform regression analysis of predicted

PROTS changes against the DTm or DDG of mutations.

The standard regression coefficient R defined in Eq. (11)

is used as a metric of the regression performance.

RESULTS AND DISCUSSION

In this section, we first describe parameterizing the

PROTS potential based on standard fivefold cross valida-

tion in the 1146 point mutations with DTm measure-

ments. This potential is then tested in discriminating

native TP/MP structures. We also compare the prediction

performance over a large set of point mutations with

other algorithms.

Cross validation

We use a standard fivefold cross validation to optimize

the weights of all terms in Eq. (9). The absolute values of

all weights are restricted to the range of 0–1. We ran-

domly assign an initial weight to each of aK and bK in

Eq. (9) and then calculate the correlation coefficient

R-value. The weights are then randomly updated and the

R-value is recalculated. The new weights are kept only if

the R-value increased; otherwise the weights are rolled

back to the previous values. This procedure is repeated

until the R-value reaches a stable plateau. The optimiza-

tion procedure of the R-values is illustrated in Figure 1

in Text S1. After 5 3 106 steps of optimization, the cor-

relation coefficient reaches 0.653 � 0.020 in the fivefold

cross validation. The quite small error indicates the per-

formance of all classifiers is consistent.
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Using the optimized weights in each training fold, we

calculate the potentials of mutations in the correspond-

ing holdout testing set for classification and regression

analysis. We then calculate the regression R-value of the

predicted values against experimentally observed DTm
values. The binary classification analysis is performed

using DTm 5 0 as the threshold to classify mutations as

stabilizing or destabilizing. In addition, we use other

algorithms to predict DTm of all 1146 point mutations

and then perform the same regression and classification

performance analysis. Both the regression and the classifi-

cation results are plotted in Figure 1 and summarized in

Table I. PROTS clearly results in favorable classification

performance over the other algorithms. For the regres-

sion, PROTS also achieves higher correlation coefficients

than other methods after mutations used as training data

are removed.

The final optimized weights from all five folds are

quite similar. We therefore build the final PROTS func-

tion by using the averaged weights from the cross valida-

tion test and use this in the blind tests presented in the

following sections.

PROTS for predicting DDG of single-point
mutations

Unlike PROTS, most of other existing algorithms for

prediction of mutation induced stability changes were

trained and tested on mutations with DDG measure-

ments. We compare the performance of the PROTS

potential with other algorithms based on a large set of

Figure 1
Linear regression (left) and ROC curves (right) of the 1146 point mutations with DTm values. In the regression plot, the cross points show the mutations

with DTm either lower than2158C or higher than 108C. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table I
Comparison of DTm Predictions For Mutations and Hypothetical Reversed Mutations

Algorithms

ALL Subseta

No. of mutants

WT?MT MT?WT

No. of mutants

WT?MT MT?WT

AUC R AUC R AUC R AUC R

MUproc 1146 0.828 0.566 0.506 0.063 583e 0.643 0.355 0.532 0.099
I-Mutant2.0b,d 1146 0.849 0.563 0.558 0.098 502f 0.655 0.342 0.545 0.067
LSE 1146 0.578 0.145 0.578 0.145 – – – – –
PROTS 1146 0.890 0.438 0.890 0.438 1014 0.882 0.530 0.882 0.530
PROTS_SEQ 1146 0.884 0.419 0.884 0.419 1014 0.878 0.514 0.878 0.514

aThis subset includes the mutations with their DTm values within the range of [2158C, 108C]. For MUpro and I-Mutant2.0, the identical mutations included in their

training set are also excluded.
b,The wild type protein 1lrp has only Ca coordinates, so its I-Mutant2.0 predictions are sequence-based.
cThe results shown here are based on MUpro regression. The AUC from MUpro classification is 0.625 based on ALL mutations and 0.504 based on mutations in the

subset.
dThe results shown here are based on I-Mutant2.0 regression. The AUC from the I-Mutant2.0 classification is 0.686 based on ALL mutations and 0.563 based on muta-

tions in the subset.
eThe AUC and R of PROTS predictions on the same subset of 583 mutations are 0.878 and 0.408.
fThe AUC and R of PROTS predictions on the same subset of 502 mutations are 0.869 and 0.444.
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point mutations with DDG values in both regression and

classification analysis. For a fair comparison, mutations

used in the training dataset of each algorithm are

excluded. The results are presented in Figure 2 and

Table II. Clearly PROTS performs better than the other

algorithms in the classification of DDG data even though

PROTS is developed using TP/MP and DTm data while

the others are based on DDG data.

Using hypothetical reverse mutations as a
testing dataset

As discussed earlier, both melting temperature and free

energy are state functions and therefore the DTm and DDG
of a mutation and its hypothetical reverse mutation

should obey Eqs. (1) and (2). PROTS performs equally

well for the reverse mutations. FoldX and EGAD, both

empirical force field-based predictors, are expected to

deliver very similar results. However, the prediction power

of machine learning based approaches, that is, MUpro and

I-Mutant2.0, diminishes with the hypothetical reversed

mutations since their AUCs are close to 0.5 (Tables I and

II). LSE is a state function and thus its performance in

predicting hypothetical reverse mutations is identical to

the forward ones. Its performance is, however, not impres-

sive in either direction (AUC 5 0.577, R 5 0.155). It

should be pointed out that for the structure-based predic-

tions made by I-Mutant2.0 and PROTS, the wild type pro-

tein structures in the hypothetical reversed mutations are

generated by simple substitution of wild type residues

with mutant ones without any conformation optimization.

Mutations may alter protein conformations. Therefore, a

simple residue substitution without conformation optimiza-

tion may not reflect reality. To perform a more strict evalua-

tion of the prediction of the hypothetical reversed mutations,

we make and evaluate predictions of DDG of 155 mutations

with known 3D structures for both wild type and mutants

(Table III). Similar to the above test, both MUpro and I-Mu-

tant2.0 deliver significantly different performance for the for-

ward and hypothetical reverse mutations. We use either wild

type or mutant structures, respectively, for forward and

reverse mutations while using the I-Mutant2.0 (Table III).

The prediction performance of PROTS on reversed

mutations is only slightly different from forward ones

Figure 2
Linear regression (left) and ROC curves (right) of the 2264 point mutations with DDG measurements. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Table II
Comparison of the DDG Predictions For Mutations and Hypothetical

Reversed Mutations

Methods No. of mutants

AUC
Correlation

coefficient (R)

WT?MT MT?WT WT?MT MT?WT

MUpro 1281a 0.687 0.564 0.483 0.167
I-Mutant2.0 933b 0.694 0.557 0.540 0.069
LSE 2156c 0.577 0.577 0.155 0.155
FoldXd 1200e 0.738 – 0.497 –
EGADd 1065f 0.745 – 0.595 –
PROTS 1500 0.819 0.819 0.402 0.402
PROTS_SEQ 1500 0.815 0.815 0.387 0.387

Mutations identical to the ones used in training were excluded for all algorithms.
aFor the 1015 forward mutations overlapped in MUpro and PROTS predictions,

AUC and R are 0.694 and 0.498 for MUpro, 0.793 and 0.407 for PROTS, respec-

tively.
bFor the 761 forward mutations overlapped in Imutant2.0 and PROTS predic-

tions, AUC and R are 0.682 and 0.545 for Imutant2.0, 0.773 and 0.306 for

PROTS, respectively.
cFor the 1500 mutations overlapped in LSE and PROTS predictions, LSE pre-

sented AUC and R are 0.569 and 0.132.
dPrediction values were provided by Dr. Vladimir Potapov.
eFor the 658 forward mutations overlapped in FoldX and PROTS predictions,

AUC and R are 0.692 and 0.448 for FoldX, 0.831 and 0.455 for PROTS, respec-

tively.
fFor the 779 forward mutations overlapped in EGAD and PROTS predictions,

AUC and R are 0.762 and 0.597 for EGAD; 0.823 and 0.438 for PROTS, respec-

tively.
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because the DT features are not identical whether the
structure of the wild type protein or its mutant is used.
Therefore we test using both structures in the predictions
(Table III). As expected, the performance using both
structures is slightly better than using only one of them
(R 5 0.521 vs. R 5 0.455 or 0.447; AUC 5 0.862 vs.
AUC 5 0.844 or 0.838). Such an approach, however, is
not very practically useful because the structures of
mutants are often unavailable due to the current absence
of some structures. Our results, nevertheless, confirm
that the current single structure approach assuming no
significant conformation changes caused by single muta-
tion is acceptable for stability prediction purposes.

PROTS for discriminating TPs and MPs

Using the optimized weights, we calculate PROTS val-

ues for all 1020 TPs and 4977 MPs according to Eq. (9).

The ROC curve of the classification is plotted and dis-

played in Figure 3. In addition to PROTS using all fea-

tures, we also calculate the values using 13 SEQ or 7 DT

features. The AUC of these three functions (PROTS,

PROTS_SEQ, and PROTS_DT) are 0.936, 0.903 and

0.889, and the accuracies are 91, 84, and 82%, respec-

tively. Therefore the model using both sequence and DT

features achieves better performance than models using

either subset of the features. It is clear that both spatial

and sequential features are useful for discriminating TPs

and MPs.

PROTS shows comparable or better performance on

TP/MP classification in comparison to other approaches.

For example, Gromiha et al. obtained an accuracy of

89% in discrimination of 1609 thermophilic proteins

from 3075 mesophilic proteins based on neural network

analysis in a fivefold cross validation.60 TargetStar, a scor-

ing function based on the analysis of 1006 decoy structures

for a given protein, can discriminate HP/MP orthologs

pairs with 77% accuracy.61 More recently, Montanucci

et al. reported a SVM model which achieves 88% accuracy

on a set of redundancy-reduced HP/MP pairs.34

PROTS for classifying structural models
of TPs and MPs

We evaluate the performance of PROTS on classifying

TP and MP structure models. We group these proteins

into two categories using 30% maximum sequence iden-

tity against all of the protein in the training dataset as

the cutting threshold. We calculate the PROTS potentials

of the models of all ortholog pairs in these two categories

using PROTS and PROTS_SEQ algorithms (Table IV).

The accuracies of the pair-wise comparisons of TP/MP

orthologs in both categories (94.2% and 97.2%) using

PROTS are higher than those using the PROTS_SEQ

potential (91.3% and 93.8%), suggesting the structure

models built using i-TASSER are useful for such an

application. In addition, the difference in accuracies

between the close and the distant pairs is fairly small,

strongly indicating that PROTS is a robust classifier for

discriminating thermophilic/mesophilic protein pairs.

Evaluating the applicability of PROTS

For predicting mutation induced stability changes, it is

highly desirable to develop algorithms applicable to

Figure 3
The ROC curves of PROTS in the classification of 1020 TPs and 4977

MPs. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Table III
Comparison of the DDG Predictions For Mutations and Hypothetical Reversed Mutations Using Wild Type and/or Mutant Structures

140 pairs of single point mutations All 155 structure pairs

R AUC R AUC

Methods WT?MT MT?WT WT?MT MT?WT WT?MT MT?WT WT?MT MT?WT

MUproc 0.967 0.012 0.971 0.536
I-mutant2.0c 0.940 0.054 0.978 0.534
PROTSa 0.455 0.447 0.840 0.833 0.469 0.463 0.844 0.838
PROTSb 0.521 0.521 0.857 0.857 0.574 0.574 0.862 0.862

aPROTS values are calculated using wild type protein structures for forward mutations and mutant structures for hypothetical reverse mutations.
bPROTS values are calculated using both wild type and mutant protein structures.
cMUpro and I-mutants2.0 are not able to predict multiple-mutation induced stability changes.
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many different types of proteins. We define applicability

as the ratio of proteins with positive correlation over all

proteins in the study because an algorithm can only be

applicable to proteins with positive correlation. To evalu-

ate the applicability of PROTS, we select proteins with

two or more mutations in DTm or DDG datasets and cal-

culate the correlation coefficients of predicted DTm and

DDG versus experimental data for the mutations of each

protein (Table V). Using the applicability as metric,

PROTS outperforms other approaches in the prediction

of mutation induced stability change in the DTm dataset

and is among the best in DDG predictions. In both cases,

the applicability of PROTS and PROTS_SEQ is higher

than 80%. Therefore these algorithms are practically use-

ful in real-world applications.

Analysis of PROTS predictions

We analyze the mutants of three proteins with typical

structures: alpha, alpha/beta and beta (Fig. 4). In the pre-

diction of 27 mutants with DTm ranging from 213.1oC

to 4.7oC from an alpha-protein (PDB ID: 4LYZ, Gallus

Gallus), a correlation coefficient of 0.714 is achieved

between PROTS predicted stability changes and observed

DTm values. Similarly, a correlation coefficient of 0.877 is

obtained based on nine mutants from a beta-protein

(PDB ID: 2AFG, Homo Sapiens) while a correlation co-

efficient of 0.721 is obtained based on 16 mutants from

an alpha/beta protein (PDB ID: 3SSI, Streptomyces Albog-

riseolus). Thus the predicted stability changes at the resi-

due level show strong correlation with experimentally

measured DTm values.

All predictive models fall into three categories accord-

ing to their comprehensibility: white-, gray-, or black-

box approaches. The process of a white-box approach is

very transparent and well understood by the user. The

black-box approach does not allow explicit explanation

of the model and the gray-box approaches are partially

visible and reasonably understood by the user. PROTS is

a white-box approach since the weights of the features

determining whether the mutation would stabilize the

target protein are known. This may reveal the mecha-

nisms of thermal stabilization. For example, the stabiliz-

ing mutation 2AFG-H93G can be largely attributed to

the positive contribution from the potential and the pro-

pensity from strand/coil and exposure, matching the sta-

tus of the H93 residue in a surface turn.62 The destabi-

lizing mutation 2AFG-C83S is caused by the unfavorable

changes of the potential and the propensity of coil and

exposure, as well as D1 Delaunay tetrahedrons, which

agrees with the fact that this residue is located in a core

region.63 The values of all features of these two muta-

tions are listed in Table VI.

ADDITIONAL DISCUSSION

PROTS has two versions. One uses structural infor-

mation, in addition to sequence information, for target

proteins with solved 3D structures. The other version

uses only sequence information. Although the sequence-

only model is not as accurate as the other that uses

both structural and sequential information, the

sequence only model, still delivers reasonably good per-

formance. Such flexibility presents an advantage over

force-fields and energy functions, which require high

resolution protein structures. Although some machine

learning based algorithms can predict protein thermo-

stability based on protein sequences only, these algo-

rithms as we show in this study fail to make acceptable

predictions for hypothetical reverse mutations. There-

fore, further validation is necessary to establish their

robustness.

In this study, we use sequential and spatial fragments

consisting of four amino acid residues as the atomic

units for determining the overall thermo-stability of pro-

teins. Although it is conceivable that using a larger size

of protein fragments may improve the quality and pre-

dictive ability of the relative potential, four-residue frag-

ments are practically the largest context for protein

sequence and structure data mining because of the lim-

ited number of available structures.64 There are 204 dif-

Table IV
Comparison of PROTS, PROTS_SEQ, FoldX, and LSE in

Discriminating 540 TP/MP Orthologous Pairs

Seq. identity
No. of
pairs PROTS PROTS_SEQ LSE FoldX

>30% 345 325 (94.2%) 315 (91.3%) 228 (66.1%) 213 (61.7%)
<530% 195 190 (97.4%) 183 (93.8%) 139 (71.3%) 102 (52.3%)

The TP/MP pairs are grouped by a threshold of 30% sequence identity to the pro-

teins in the 1020 1 4977 dataset. The number of correct predicted pairs and the

accuracies (in parentheses) are shown.

Table V
Comparison of the Applicability of Various Algorithms

Dataset Algorithms
No. of
proteins

No. of proteins
with positive
correlation

Applicability
(%)

The 1146 mutants
dataset with DTm
values

MUpro 65 47 72.3
I-Mutant2.0 59 41 69.5
LSE 78 47 60.3
PROTS 78 71 91.0
PROTS_SEQ 78 67 85.9

The 2156 mutants
dataset with DDG
values

MUpro 62 42 67.7
I-Mutant2.0 47 35 74.5
LSE 80 49 61.2
FoldX 59 48 81.4
EGAD 52 43 82.7
PROTS 67 55 82.1
PROTS_SEQ 67 56 83.6

The predictions are grouped by the wild type proteins. The applicability is defined

as the ratio of proteins with positive correlation of predicted stability potential

changes versus DTm or DDG over all proteins used in the study. An algorithm can

be only applicable in proteins with positive correlation.
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ferent permutations and 8855 combinations of four

amino acid residues. The former number is of the same

magnitude of protein sequences with solved structures

deposited in the protein data bank (PDB) and the latter

is close to the number of currently known structural

domains.65 There have been several successful studies

Figure 4
Examples of PROTS in prediction stability changes for mutants of an alpha-protein (PDBid: 4lyzA, top), a beta-protein (2afgA, middle) and an

alpha/beta protein (3ssiA, bottom). The left column presents the regression on all of the mutants. Some significant mutants are labeled. The middle

column shows the PROTS potential change at residue level for each mutation. Some unchanged residues are omitted for clarity. The right column

illustrates the mutation locations in the wild type proteins. The protein images are generated using Pymol.

Table VI
The Value Changes of the PROTS Features in the Mutations 2afgA-H93G and 2afgA-C83S

Features dS(occ) dS(helix) dS(strand) dS(coil) dS(expose) dS(bury) dS(inte) dD(helix) dD(strand) dD(coil)

2afgA-H93G 0.05081 20.00289 0.02638 0.01391 20.03207 20.00471 0.01364 20.62592 0.89423 0.73169
2afgA2C83S 20.07152 20.01726 20.00536 20.02596 20.02933 20.01181 20.01487 0.99053 0.48947 20.47999

Features dD(expose) dD(bury) dD(inte) dS(occ_DT) dS(D43) dS(D2) dS(D1) dD(D43) dD(D2) dD(D1)

2afgA-H93G 0.84556 20.06830 0.22273 0.14110 0.20217 0.09523 0.00399 0.00591 0.23480 0.01160
2afgA-C83S 20.09300 0.71281 0.38019 20.01118 20.10821 0.00916 20.01869 20.04084 0.30373 20.24736
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using four-residue fragments as the context of protein

properties. For example, Chan et al. developed tetrapep-

tide-based local structure entropy,27 which was later

utilized by Bae et al. [71] to design and eventually pro-

duce stabilized adenylate kinase mutants.66 Using a scor-

ing function based on four-residue Delaunay Tetrahe-

drons (DTs), Deutsch and Krishnamoorthy were able to

discriminate the stability and reactivity changes resulting

from mutations with high accuracy.59

CONCLUSION

In this work, we develop PROTS, a sequential and spa-

tial fragment based potential, for classifying TPs/MPs and

stability changes upon mutations. Our approach utilizes

structural profile enhanced lookup tables and exhibits

good performance in both classification and regression.

We also introduce hypothetical reversed mutations for

comprehensive evaluation of the algorithms for protein

thermo-stability change predictions. Currently we are

applying PROTS to the design of stable mutants of sev-

eral proteins. The results will be reported separately at a

later date.
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