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Protein design aims at designing new protein molecules of desired structure
and functionality. One of themajor obstacles to large-scale protein design are
the extensive time and manpower requirements for experimental validation
of designed sequences. Recent advances in protein structure prediction have
provided potentials for an automated assessment of the designed sequences
via folding simulations. We present a new protocol for protein design and
validation. The sequence space is initially searched byMonte Carlo sampling
guided by a public atomic potential, with candidate sequences selected by
the clustering of sequence decoys. The designed sequences are then assessed
by I-TASSER folding simulations, which generate full-length atomic
structural models by the iterative assembly of threading fragments. The
protocol is tested on 52 nonhomologous single-domain proteins, with an
average sequence identity of 24% between the designed sequences and the
native sequences. Despite this low sequence identity, three-dimensional
models predicted for the first designed sequence have an RMSD of b2 Å to
the target structure in 62% of cases. This percentage increases to 77% if we
consider the three-dimensional models from the top 10 designed sequences.
Such a striking consistency between the target structure and the structural
prediction from nonhomologous sequences, despite the fact that the design
and folding algorithms adopt completely different force fields, indicates that
the design algorithm captures the features essential to the global fold of the
target. On average, the designed sequences have a free energy that is
0.39 kcal/(mol residue) lower than in the native sequences, potentially
affording a greater stability to synthesized target folds.
© 2011 Elsevier Ltd. All rights reserved.
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Introduction

Protein design aims to discover novel amino
acid sequences that fold into target conformations of
desired functionalities.1,2 Computational approaches3

usually commence with a rigid or slightly flexible
backbone structure and search for an amino acid
sequence that minimizes, through a favorable
d.
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Table 1. Sequence and structural assessment of the sequences designed for 52 test proteins

PDB ID
(length)

% Identity to native sequence RMSD of I-TASSER model to target (Å)

Clustering Free-energy minimization Clustering Free-energy minimization

First taga Best tagb Global minimumc Local minimumd First tag Best tage Global minimum Local minimumf

1GUTA (51) 20 (33)f 24 (44) 22 (33) 24 (22) 1.93 1.39 0.86 0.83
2CMPA (52) 25 (69) 25 (69) 19 (46) 27 (69) 0.99 0.75 3.31 0.67
3G36A (52) 21 (0) 25 (25) 19 (0) 29 (0) 3.35 3.04 3.55 2.44
3FILA (56) 32 (67) 32 (67) 25 (50) 34 (67) 0.86 0.86 0.88 0.78
1OAIA (57) 25 (31) 30 (31) 16 (15) 26 (31) 1.56 1.38 2.43 1.42
2VPBA (57) 9 (18) 18 (27) 11 (9) 18 (27) 10.23 6.19 12.35 6.14
2V1QA (59) 27 (71) 31 (57) 32 (64) 32 (64) 1.16 1.16 3.79 0.71
1KQ1A (60) 17 (38) 22 (23) 15 (15) 22 (38) 0.72 0.72 7.31 0.84
2P5KA (63) 14 (31) 21 (38) 16 (44) 22 (63) 11.30 1.80 11.55 1.78
1TUKA (67) 27 (42) 31 (47) 28 (42) 30 (42) 2.24 2.12 2.70 2.13
2O9SA (67) 31 (53) 33 (47) 31 (53) 33 (58) 12.81 2.22 2.44 2.30
1UTGA (70) 13 (10) 21 (20) 21 (30) 21 (20) 0.74 0.73 0.64 0.64
1V5IB (70) 27 (40) 27 (40) 23 (35) 26 (35) 1.66 1.66 3.57 1.50
2B97A (70) 27 (37) 27 (37) 27 (53) 34 (53) 2.98 1.12 0.70 0.70
2QCPX (76) 29 (79) 29 (79) 25 (53) 29 (68) 4.33 0.89 2.26 2.16
2CVIA (77) 20 (32) 22 (32) 22 (32) 23 (36) 4.39 1.05 6.05 2.63
3G21A (77) 26 (26) 27 (21) 13 (21) 25 (37) 2.12 2.12 10.05 2.74
2J8BA (78) 21 (36) 21 (36) 22 (24) 22 (24) 10.98 4.62 11.58 8.16
2D3DA (83) 22 (42) 33 (63) 24 (38) 31 (54) 2.64 1.07 2.59 1.12
3FEAA (83) 31 (54) 36 (58) 31 (54) 33 (62) 0.66 0.66 0.75 0.67
2ZXYA (86) 23 (27) 29 (45) 28 (36) 29 (50) 10.48 1.12 3.18 2.05
2GPIA (91) 11 (22) 19 (39) 9 (17) 20 (30) 15.67 2.86 18.54 12.05
2FTRA (96) 20 (20) 29 (32) 20 (20) 31 (32) 6.45 3.05 7.31 1.41
1IUJA (97) 20 (21) 23 (18) 21 (25) 22 (25) 3.91 1.96 4.73 3.85
1MG4A (101) 22 (37) 30 (50) 20 (33) 32 (50) 1.22 1.22 1.69 1.24
2PV2A (103) 29 (50) 33 (53) 29 (50) 35 (53) 0.70 0.65 0.67 0.65
1VQSA (104) 26 (29) 27 (36) 23 (39) 24 (29) 4.03 1.25 2.60 1.25
3IV4A (106) 20 (32) 25 (50) 20 (32) 24 (42) 11.66 3.85 12.54 2.98
3CTGA (108) 18 (24) 24 (32) 16 (24) 24 (38) 1.13 0.91 0.89 0.88
1NZ0A (109) 20 (30) 24 (38) 21 (33) 27 (38) 1.60 1.55 2.58 0.97
3E9TA (112) 24 (35) 33 (59) 23 (35) 33 (59) 1.01 0.78 0.75 0.62
1O7IA (115) 24 (41) 30 (38) 24 (38) 29 (46) 0.69 0.69 6.57 0.72
3H7HA (115) 24 (31) 24 (31) 19 (26) 22 (33) 0.72 0.72 3.86 0.79
1WN2A (117) 30 (49) 30 (49) 27 (44) 30 (51) 1.05 1.05 1.88 0.73
2F01A (121) 18 (24) 20 (34) 21 (28) 21 (28) 2.92 2.92 3.63 3.63
1DBWA (123) 31 (35) 31 (35) 24 (25) 31 (35) 1.38 1.05 1.13 1.13
2ERBA (123) 20 (31) 21 (39) 20 (33) 26 (47) 1.19 0.80 2.35 0.93
1EAQA (124) 31 (46) 31 (46) 25 (39) 33 (49) 1.20 1.20 4.30 1.16
1OH0A (125) 23 (27) 28 (43) 25 (32) 26 (27) 1.41 0.96 1.27 1.18
1VZIA (125) 24 (50) 29 (56) 25 (56) 29 (56) 0.72 0.72 0.99 0.67
2VZCA (127) 29 (53) 29 (53) 22 (34) 30 (49) 1.03 1.03 1.80 0.84
1ZHVA (128) 24 (32) 24 (32) 24 (29) 28 (37) 0.73 0.73 0.67 0.67
1JF8A (130) 29 (46) 29 (46) 22 (32) 29 (50) 0.71 0.63 3.88 0.64
3EBTA (131) 28 (51) 28 (51) 25 (47) 30 (53) 1.22 1.12 6.14 1.09
2PR7A (137) 26 (35) 29 (37) 23 (24) 32 (39) 1.27 0.91 3.42 0.63
1QHQA (139) 37 (48) 37 (48) 33 (44) 36 (50) 0.56 0.55 0.55 0.50
2O1QA (139) 26 (33) 28 (41) 27 (33) 27 (37) 0.83 0.80 0.86 0.84
2WLVA (144) 20 (20) 26 (31) 25 (29) 26 (36) 1.48 0.84 0.96 0.76
2ANXA (145) 23 (32) 28 (43) 24 (34) 30 (43) 0.88 0.77 1.83 0.79
3FH2A (145) 32 (42) 32 (42) 31 (38) 37 (48) 0.83 0.56 0.62 0.54
2V0UA (146) 21 (36) 21 (36) 19 (30) 21 (36) 3.12 3.12 5.97 4.14
3EF8A (149) 17 (22) 17 (22) 17 (20) 19 (22) 17.11 14.77 14.63 14.03
Average 24 (37) 27 (42) 23 (34) 28 (42) 3.40 1.74 4.08 2.01

a First cluster tag.
b Cluster tag of the highest sequence identity to the native sequence.
c Global free-energy minimum over the 10 runs of Monte Carlo minimization.
d Run-local free-energy minimum of the highest sequence identity to the native sequence over the 10 Monte Carlo runs.
e Cluster tag of the lowest RMSD to target.
f Run-local free-energy minimum of the lowest RMSD to target over the 10 Monte Carlo runs.
g The identities in parentheses are restricted to the core residues.
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Fig. 1. Comparison of amino acid type distributions in native sequences and designed sequences for the test protein set.
The frequency of occurrence of each amino acid type in the 52 native sequences (black) and in the 520 cluster tags (shaded)
is shown for (a) all the residues, (b) the residues in the core, and (c) the residues on the surface. The amino acid types are
ordered by decreasing hydrophobicity according to the scale reported by Kyte and Doolittle.25
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arrangement of side chains, the (Gibbs) free energy of
the protein. Such an approach relies on the working
paradigm that the sequences of the lowest free energy
are the most stable in the target structure.
Since the search space is generally too large for the

global free-energy minimum to be found determinis-
tically, one has to rely on stochastic optimizations4

such as the popular Monte Carlo algorithms,5 which
do not guarantee global optimality because they
evaluate only a sample of the search space; nonethe-
less, such algorithms can approach global optima in
comparatively short times. The exact minimization of
free energy is also impeded by approximation errors in
the computation of free energy; while the general free-
energy landscape of the system may be preserved,
such errors can deform the global minimum, thereby
compromising the reliability of any computed global
minimum as the most suitable for the target structure.
We speculate that a plausible correction measure
might be to cluster by sequence similarity the decoys
obtained in free-energy minimization, and then to
select the final sequence from the largest cluster. It is
expected that the final sequence is, in terms of
suitability to the target structure, a better representa-
tive of the ensemble of low free-energy decoys than the
computed global free-energy minimum. The idea of
clustering low free-energy decoys by sequence simi-
larity is analogous to the one successfully used in the
fields of protein structure prediction and protein
docking. In those works,6–8 clusters of structurally
similar three-dimensional decoys obtained from ener-
gyminimization often hadmembers that, compared to
the decoys having the lowest energy,were closer to the
native structure.
A protein design algorithm using the basic

principle of free-energy minimization should be
effective over a range of target folds. It is therefore
sensible to assess its performance on a target set that
is large and heterogeneous. Although the produc-
tion of novel folds is a major motivation for many
protein designs,9 the assessment of any algorithm on
a large scale is still dependent on natural
backbones,10–13 whose native sequences and struc-
tures remain crucial for the validation of designed
sequences. Such a need is due to the daunting costs
of experimental validation for the target fold,
requiring the time-expensive and manpower-expen-
sive procedures of cloning, expression, purification,
and crystallization.
Traditionally, the main criterion of automatic

assessment has been native recapitulation, measur-
ing the degree of similarity between the native
sequences and the designed sequences. If the two
are consistently similar over a representative en-
semble of proteins, the algorithm is expected to yield
correctly folding sequences for any backbone,
including novel structures. By taking native reca-
pitulation as simply the percent identity between the
native sequences and the designed sequences,
average values of 23% over 264 proteins11 and 38%
over 38 proteins13 were previously reported. Other
studies10,12 defined a slightly different metric—the



Fig. 2. The target structure (green) and the I-TASSER model of the designed sequence (red) for three representative test
proteins. The β target (left) is the calcium-binding domain of the Calx protein from Drosophila melanogaster (PDB ID
3E9TA); the α target (center) is an odorant binding protein from Anopheles gambiae (PDB ID 2ERBA); and the α/β target
(right) is the peptidyl-tRNA hydrolase 2 from Pyrococcus horikoshii ot3 (PDB ID 1WN2A). The designed sequences have a
native sequence identity of 24%, 18%, and 30%, respectively. The figure was produced using PyMOL.27
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percentage, over all test proteins, of designed
residues that are identical with the native ones—
obtaining values of 27% over 108 proteins10 and 37%
over 42 proteins.12 Regardless of the precise
definition, native recapitulation invariably in-
creased, reaching 51%,10 57%,12 and 63%,13 when
evaluated only in the residues forming the core of
the protein, a consequence of the major contribution
of the core to a fold's stability.14,15

The automatic assessment of designed sequences
has become more complete thanks to the recent
methodological advances in protein structure
prediction,16 which have allowed a more robust
evaluation of whether a designed sequence can fold
into the target backbone structure. Although protein
structure prediction still cannot guarantee the same
level of confidence as experimental validation, the
field has matured to the point that low-resolution to
medium-resolution structure models (mainly at the
fold level) can be generated for single-domain
proteins even in the absence of homologous tem-
plates. For example, I-TASSER,17,18 demonstrated to
be one of the most reliable protein structure
prediction methods in the recent blind CASP
(Critical Assessment of Techniques for Protein
Structure Prediction) experiments,19,20 can generate
correct folds for two-thirds of the single-domain
proteins without using any templates with an
identity of N30% to the target sequence.
In this work, we present a new algorithm for

protein design, which first generates a set of decoy
sequences from 10 runs of Monte Carlo free-energy
minimization and then selects from the set, by
means of a sequence-based clustering procedure, the
putative sequences for the target fold. During the
minimization stage, the free energy of each decoy
sequence is evaluated by FoldX,21 with the side-
chain conformations calculated by SCWRL.22 Dur-
ing the clustering stage, the decoy sequences are
grouped into clusters according to a “sequence
distance” calculated using the BLOSUM62 matrix.23
We assess the foldability of the designed sequences
on 52 nonredundant single-domain proteins in
terms of the backbone RMSD between the target
structures and the models predicted by I-TASSER
for the designed sequences. A comparison to
previous large-scale works is made on the native
recapitulation of the designed sequences. In the
following sections, the sequences selected by the
clustering procedure (10 per test protein) will be
called “cluster tags”; in particular, the “first cluster
tag” will denote the sequence selected from the
largest cluster. Although we treated the FoldX score
as “energy” in our Monte Carlo search, the FoldX
function contains two entropic terms besides the
energy (enthalpic) terms, accounting for the entropic
costs of fixing the backbone in the folded state and
fixing the side chains in specific conformations,
respectively.21 We therefore refer to the FoldX score
as “FoldX free energy” throughout the article.
Results

Sequence-based assessment of the designed
sequences

The native recapitulation of our designed
sequences is similar to the lowest values reported
in previous studies.10–13 According to Table 1, the
average sequence identity of the first cluster tag to
the native sequence is 24%. A slightly lower identity
(23%) was obtained in the study of Larson et al.,
where the sequences designed for the same protein
were explicitly selected for diversity.11 If for each
protein one considers the cluster tag with the highest
identity to the native sequence, the average identity
increases to 27%, a value that is significantly lower
than the 38% obtained by Ding and Dokholyan.13

Even when defined as the percentage of all designed
residues that are identical with the native residues,



Fig. 3. Superposition of the target structure (green), the
I-TASSER model of the designed sequence (red), and the
best template identified by the threading program (blue).
The template regions that were driven closer to the target
by the I-TASSER structural assembly are enclosed by
circles. (a) The target is subunit A of the molybdate
binding protein II from Clostridium pasteurianum (PDB ID
1GUTA); the I-TASSER model of the designed sequence
has an RMSD to target of 1.39 Å, and the template has an
RMSD to target of 2.56 Å. (b) The target is the NTF-like
protein of unknown function from Burkholderia pseudo-
mallei K96243 (PDB ID 3EBTA); the I-TASSERmodel of the
designed sequence has an RMSD to target of 1.17 Å, and
the template has an RMSD to target of 2.22 Å. The figure
was produced using PyMOL.27
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the native recapitulation is 24% for the first cluster
tag and 27% for the highest-identity cluster tag;
these values are comparable to the 27% of Kuhlman
and Baker,10 but well below the 37% of Saunders
and Baker.12 A similar trend holds, albeit with
higher values, where sequence identity is defined
only on the core residues (values in parentheses;
Table 1). For example, the cluster tag of the highest
identity to the native sequence has an average core
identity to the native sequence of 42%, while the
Fig. 4. Identity of the designed sequences to the native
sequences versus the backbone RMSD to target of the
I-TASSER model. Both colors (red and blue) represent the
same 520 sequences (cluster tags) designed for the 52 test
proteins. The blue circles refer to a sequence identity
computed over all residues, while the red circles refer to a
sequence identity computed over the core residues only.
average core identity to the native sequence
reported by Ding and Dokholyan was 63%.13 It
should, however, be noted that the different
recapitulations of the core residues between our
algorithm and previous methods10,12,13 may partly
reflect our definition of the core residues (see
Materials and Methods). While the low native
recapitulation of our designed sequences means
that they differ significantly from sequences that are
known to fold into the target structures, this should
not be taken as evidence that the target structures
are inaccessible to our designed sequences. In fact,
the assessment by native recapitulation may unduly
disregard the remote homologs,11,24 which still
adopt the target fold despite a low identity to the
native sequence (say, b30%).
Table 1 invites a closer examination of the

relationship between native recapitulation and
protein length. Since the number of Monte Carlo
movement steps is fixed at 30,000 while the
sequence space grows geometrically with protein
length, the free-energy minimization would pre-
sumably end prematurely for longer proteins
compared to shorter ones if there were insufficient
sampling of sequence space. In fact, the identity of
the cluster tags to the native sequence does not
decrease with protein length. Rather, the correlation
coefficient between the two quantities is actually
positive (0.21 for the first cluster tag and 0.09 for the
highest-identity cluster tag) when sequence identity
is computed over all residues, and is just slightly
negative (−0.09 and −0.07, respectively) when only
the core residues are considered. Such a low
correlation may indicate that the Monte Carlo
minimization did indeed adequately sample the
important regions of sequence space even with the
relatively small, fixed number of movement steps.
We note that the low native recapitulation

originates from a substantial diversity between
native sequences and designed sequences in the
distribution of amino acid types. In Fig. 1a, it is
evident that the designed sequences are more
hydrophobic, with 63% of the residues concentrated
in the hydrophobic amino acid types (isoleucine
through alanine25), compared to 39% in the native
sequences. Particularly striking is the 16% of
methionine in the designed sequences, a value that
is more than six times higher than in the native
sequences. In correspondence with the rich hydro-
phobic residue content, the designed sequences
have also fewer hydrophilic residues. This gap is
mainly due to the seven most hydrophilic amino
acid types, which are consistently less frequent in
the designed sequences compared to the native
sequences, with cumulative frequencies of 9% and
35%, respectively. By contrast, the remaining hy-
drophilic amino acid types are similarly represented
in the native (26%) and designed (28%) sequences.
The abundance of hydrophobic amino acids in the

image of Fig. 3
image of Fig. 4
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designed sequences is not surprising, since for a
process of free-energy minimization, the hydropho-
bic interactions are favored due to their low
energies. This suggests that free-energy minimiza-
tion may yield sequences that stabilize the target
fold to a greater degree than the native sequence,
whose fold stability may be only that which is
necessary to enable biological function.
Nonetheless, the native sequences do feature

many hydrophobic amino acids in the core, since
the hydrophobic interactions in the core mainly
determine fold stability.14 As would therefore be
expected, the native and designed amino acid
distributions display a much closer agreement over
the core residues (Fig. 1b), as indicated by a
correlation coefficient of 0.70 for the core residues
and a correlation coefficient of 0.22 overall. The
agreement is particularly strong (with a correlation
coefficient of 0.93) in the six nonmethionine hydro-
phobic amino acid types. As these constitute the
majority of the core residues (amounting to 63% in
the native sequences and 62% in the designed
sequences), our protein design algorithm seems to
capture the primary importance of hydrophobic
interactions in forming the protein cores. Another
amino acid type that occurs with similar frequency
in the native and designed sequences is glycine; this
similarity may follow, more directly, from the high
native recapitulation observed for glycine residues
due to the ability of FoldX to recognize (via an
appropriate backbone entropy term21) the dihedral
angles specifically adopted by glycine.
In Fig. 1c, we also show the frequency of the amino

acid types in the surface regions. As expected, the
hydrophobic residues on the surface are more
frequent in the designed sequences (54%) than in the
native sequences (27%), although the occurrence in
the designed sequences is slightly lower for some
amino acid types (i.e., valine and alanine). In fact,
much of the disproportion in hydrophobic content
between native sequences and designed sequences is
accounted for by the surface residues because it is here
that the native sequences have been shaped by the
evolutionary pressures for functional activity, involv-
ing, for example, the enforcement of charged/polar
interactions with the ligands. Such ligand interactions
and evolutionary pressures were, on the other hand,
completely disregarded during the design of our
sequences, which were instead selected purely to
have the lowest free energy, in an attempt to optimize
the stability of the target fold. Aswill be seen later, the
free energy computed for the designed sequences is
indeed much lower than in the native sequences over
all the targets in our test set. In agreement with this
observation, for example, studies by Spector et al.
showed that hydrophilic-to-hydrophobic mutations
can result in an increase in the fold stability of the
native structure, even with the mutated residues
located at the surface of the protein.26

Structure-based assessment of the designed
sequences

Despite having a relatively low native recapitula-
tion and an amino acid distribution similar to that of
the native sequences only in the core residues, the
designed sequences are generally predicted by
I-TASSER to fold very close to the target structure.
Examples of this close similarity between the
I-TASSER model and the target structure are
illustrated in Fig. 2 for three selected proteins (of
types α, β, and α/β, respectively), while Table 1
summarizes the RMSD between the model and the
target for all 52 test proteins. We define a test protein
as “covered” if at least one of the 10 cluster tags is
predicted by I-TASSER to fold at closer than a
specified RMSD threshold to the target structure.
Here, only the first structure model of I-TASSER is
considered.18 Table 1 shows that the fraction of
covered proteins is 42% if the threshold is set to a
Fig. 5. Energetic and structural
assessment of the designed
sequences for six representative
test proteins. The FoldX free energy
of the designed sequences on the
target structure is plotted versus the
backbone RMSD between the target
and the I-TASSER model. The
crosses denote the sequences of the
lowest free energy in each Monte
Carlo run (run-local minima), while
the open circles denote the cluster
tags from all Monte Carlo runs. The
native sequence is denoted by a
filled diamond.

image of Fig. 5


Fig. 6. Energetic and structural comparison between the
native hydrophobic core and the designed hydrophobic
core of the pleiotropic translational regulator Hfq from
Staphylococcus aureus (PDB ID 1KQ1A), where side-chain
packing was predicted by SCWRL22 on the target
backbone for both the native sequence and the designed
sequence. (a) FoldX free-energy variation undergone by
the protein after themutation of a single core residue into a
different amino acid type. For each of the fivemutated core
residues, the free-energy variations caused by the 19 new
amino acid types are plotted following the order specified
at the top of the panel. (b) Stick representation of the five
core residues described in (a) as packed in the native and
designed sequences. Carbon atoms are depicted in green
for the native sequence and in red for the designed
sequence, while the unique sulfur atom is depicted in
yellow. The figure was produced using PyMOL.27
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very strict value of 1 Å. The coverage increases to
77% for a threshold of 2 Å, which is a reasonable
upper bound for protein design to be regarded as
successful.9,28–30 By taking into account only the first
cluster tag, we covered 29% of the proteins under
1 Å and 62% of the proteins under 2 Å.
When a looser cutoff of 4 Å (which generally

corresponds to a structural similarity at the fold
level) is considered, the protein design algorithm
could not cover only three test proteins out of 52:
2VPBA, 2J8BA, and 3EF8A. However, variants of the
clustering procedure presented here (see Materials
and Methods) allowed us to also cover proteins
2J8BA and 3EF8A. For the case of 2J8BA, setting the
minimum size of the first cluster to 10% of the initial
decoy set (as opposed to 40%) yielded a first cluster
tag at 2.88 Å from the target. Protein 3EF8A was
covered at 3.73 Å (second cluster tag) by defining
sequence distance in terms of sequence identity
rather than the BLOSUM62 score, and by constrain-
ing the sequences in a cluster to be N40% identical
with the cluster tag. Such algorithmic variants,
however, resulted in a slightly poorer coverage
over the entire test set. Protein 2VPBA offered no
successful structure predictions of RMSD b4 Å for
any designed sequence.
The I-TASSER models are very close to the target

structures primarily because similar template struc-
tures were detected for the designed sequences
despite the low sequence identity between the
designed sequences and the targets. Obviously, the
structural features encoded in the designed
sequences, including secondary-structure and sol-
vent-accessibility propensities, are key for the
I-TASSER threading algorithms to correctly recognize
the templates. In addition, the I-TASSER structure–
assembly procedure often helps to refine the
templates closer to the target, as consistently
observed in the blind CASP experiments. In
CASP7,31 for example, the I-TASSER server drove
the threading templates closer to the native structure
for 90 of the 105 template-based modeling targets,
with an average RMSD improvement of ∼1 Å in the
aligned regions; in CASP8,32 the I-TASSER models
were closer to the native structure than the best
threading templates for 139 out of 164 test domains,
resulting in an RMSD reduction by 1.3 Å. In this
study, I-TASSER proved that it can drive the
threading templates closer to the target structure
even when the modeled sequences are designed by
computers. Figure 3 shows two of such examples.
For protein 1GUTA (Fig. 3a), the best template has
an RMSD of 2.56 Å to the target structure, which
decreased to 1.39 Å after a substantial reassembly of
the N-terminus, the C-terminus, and the first two
loops; in the case of 3EBTA (Fig. 3b), due to a
refinement throughout the entire structure and
particularly of the β-sheet, the RMSD to target was
reduced from 2.22 Å for the best template to 1.17 Å
for the final model. Thus, the designed sequences
are supported by the I-TASSER predictions in both
aspects of threading and structure reassembly.
Even when evaluating the designed sequences in

terms of their I-TASSER models, there is no clear
dependence of sequence quality on sequence length.
From the data in Table 1, we observe that the
correlation coefficient between the model's RMSD to
target and the sequence length is −0.17 for the first
cluster tag and 0.05 for the lowest-RMSD cluster tag.
Somewhat surprisingly, the average RMSD to target
of the first cluster tag is almost twice as large for the
26 shortest proteins (top half of Table 1) compared to
the longest 26 proteins (4.47 Å versus 2.33 Å,
respectively). With respect to the lowest-RMSD
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cluster tag in the top 10 clusters, the difference
between the two subsets of proteins remains,
although the gap is reduced to 5% (1.78 Å versus
1.70 Å). This reflects that our design algorithm
seems to work better for the longer proteins than for
the shorter ones, presumably because the longer
proteins tend to be packed into conformations that
are more stable, and, therefore, are easier for the
method to identify the lowest free-energy sequence.
Although the data showed that the I-TASSER

prediction of the target fold was not barred by the
low native recapitulation of the designed sequences,
one might still expect the designed sequences with
better I-TASSER models to display a higher identity
to the native sequences, at least in the core regions.
Our results indicate that the correlation between the
native sequence identity and the RMSD to target of
the I-TASSER model is weak, and it is weaker in the
core residues than in the whole chain. Over all the
cluster tags, the correlation coefficient is −0.51where
sequence identity is computed over all residues, and
−0.32 where sequence identity is restricted to the
core residues. Regarding the first cluster tags, the
corresponding values are −0.45 and −0.26, respec-
tively. Figure 4 illustrates that there is no obvious
correlation along the entire RMSD range, and many
of the designed sequences have a low native
sequence identity but also a low RMSD to target.
For example, of the 315 cluster tags with a target
RMSD of b4 Å, 297 (i.e., 94%) have a native sequence
identity of b30%, while 84 (i.e., 27%) have a native
sequence identity of b20%. Similarly, considering the
180 cluster tags with a target RMSD of b2 Å, the
native sequence identity is b30% in 92% of the cases
and b20% in 22% of the cases. At an RMSD threshold
of 2Å, 88% of the cluster tags are b50% identical with
the native sequences in the core residues.
An average identity of 24% between designed

sequences and native sequences is low for the
standards of protein design but still far from the
expected 5% identity of random sequences. To rule
out the possibility that the low-RMSD I-TASSER
models are an artifact of the nonrandom sequence
identity to the native sequences, we ran I-TASSER on
a set of sequences that were generated randomly but
with a sequence identity to native sequences of N24%,
as measured by the Needleman–Wunsch sequence
alignment algorithm.33 As a result, for the same52 test
proteins, no sequence could be folded by I-TASSER
into a structure at b9 Å from the target structure, with
the average RMSD to target being 13.8 Å. Even when
the randomized sequences were adjusted to follow
the secondary-structure propensities in the native
sequences [by incorporating sequence segments cut
from other Protein Data Bank (PDB) structures that
had the same helical or strand secondary structure
and by keeping the overall sequence identity to native
sequences of N24%], the folding result by I-TASSER
had no general improvement: all I-TASSERmodels of
the randomized sequences have an RMSD to target of
N6 Å, while their average RMSD to target is 13.4 Å.
The randomized sequences in the latter case,
endowed with secondary-structure propensity but
devoid of optimized tertiary interactions to stabilize
the global fold,may be seen as a computationalmodel
of sequences that can only fold into molten-globule
states, representing nonfunctional states of native-like
secondary structure but without a tightly packed
tertiary core. Hence, the I-TASSER algorithm is
indeed selective to native-like sequences, satisfying
the minimum requirement for validating designed
proteins by computational structure prediction. The
above experiment also shows that mere coupling of
native sequence identity and secondary-structure
propensity does not constitute a native-like sequence.
Our protein design algorithm instead takes the
organization of amino acid residues one step further,
for example, by reinforcing not only the secondary-
structure propensity but also the critical tertiary
interactions through a dense network of hydrophobic
arrangements, which may enable the designed
sequences to adopt the target fold and tokeep it stable.
The I-TASSER structure prediction highlighted

that the sequences designed by free-energy minimi-
zation plus clustering are better than those designed
by free-energy minimization alone; the improve-
ment, however, failed to be detected by native
recapitulation. In Table 1, it can be seen that the
sequence identity to native sequences of the cluster
tags is similar to that of the free-energy minima local
to the 10 Monte Carlo runs (referred to as “run-local
minima”). In particular, by comparing equivalent
sequences in the two approaches, we observe that
the first cluster tag (24% average identity) and the
global free-energy minimum over all Monte Carlo
runs (23%) score almost equally, and the same
applies to the cluster tag (27%) and the run-local
minimum (28%) of the highest identity to the native
sequence. The only notable difference in terms of
native sequence identity lies in the core residues,
with 37% for the first cluster tag and with 34% for
the global free-energy minimum. On the other hand,
the average RMSD to target of the I-TASSER models
is 17% lower for the first cluster tag (3.40 Å) than for
the global free-energy minimum (4.08 Å), and 13%
lower for the lowest-RMSD cluster tag (1.74 Å) than
for the lowest-RMSD run-local minimum (2.01 Å).
Taken together, these results indicate that free-
energy minimization yields, on its own, valuable
sequence trajectories, but it pays off to combine it
with clustering, especially to select a single designed
sequence out of a pool of candidates.

Energy-based assessment of the designed
sequences

Selecting a designed sequence based on free
energy alone is discouraged by the rather weak
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correlation between the free energy of the designed
sequences and the RMSD to target of their I-TASSER
models. The correlation coefficient over all cluster
tags and run-localminima of a protein is, on average,
0.23. Example data for six representative proteins are
provided in Fig. 5, where it can also be noted that the
native sequence has a higher free energy than all
cluster tags and all run-local minima. This behavior
holds for 51 of the 52 test proteins, with the native
free energy being, on average, 0.39 kcal/(mol
residue) higher than the free energy of the cluster
tags and 0.48 kcal/(mol residue) higher than the free
energy of the run-local minima. Our designed
sequences, if able to fold into the target structure,
thus promise to stabilize it more than the native
sequence. Furthermore, because sequences with a
lower free energy than the native sequence were
typically found early in the Monte Carlo runs, it is
difficult to believe that the native sequence is even a
suboptimal free-energy minimum.
Another way to evaluate how likely the designed

sequences may stabilize the target fold is through
point mutation. For this purpose, we performed an
extensive in silicomutation study on all the native and
designed sequences of our 52 test proteins, whereby
each residue was mutated, in turn, into all other 19
amino acid types. The FoldX free energy of such one-
residuemutant sequenceswas then compared against
that of the original sequences. On average, 26% of the
mutants of the native sequences cause a free-energy
decrease, indicating that the native sequence is far
from being a local free-energy minimum even among
its own one-residue neighbors, based on the FoldX
force field. By contrast, the designed sequences have
only 5% of the mutants decreasing free energy,
although they were obtained by clustering and not
by pure free-energy minimization.
The residues of the designed sequences appear to

be even more optimized in the core regions, since
their mutation decreases free energy in less than 1%
of the cases. This parallels the higher degree of
optimization observed in the native cores, for which
only 13% of the point mutations result in a free-
energy decrease. An illustrative example of the
mutational study is given in Fig. 6a for five core
residues of protein 1KQ1A, considered in both
native and designed sequences. For either sequence,
the five residues display very favorable packing
interactions, since free energy is increased by all
mutations, except for two (F10M and V39M), in the
native sequence and by all mutations, except for one
(I39V), in the designed sequence. The free-energy
decrease in such three cases is small, reaching
0.59 kcal/mol at most. On the other hand, the
average free-energy increase over the five residues
is 6.21 kcal/mol for the native sequence and
9.06 kcal/mol for the designed sequence, suggesting
that the packing of side chains in the latter is more
intolerant to mutations that might insidiously
corrupt the stability of the protein structure. A
central position in this system of five residues is
occupied by residue 31 (Fig. 6b), which is an
isoleucine in the native sequence and a methionine
in the designed sequence. The fact that the average
distance to the other four residues is lower for M31
(3.65 Å) than for I31 (3.77 Å) is indicative of a denser
local packing around the former. This may help to
understand why mutating M31 is less tolerated than
mutating I31 (due to average free-energy increases
of 8.78 kcal/mol and 6.11 kcal/mol, respectively).
On average, over the entire test set, the free-energy
increase by point mutation is 47% more in the
designed sequences than in the native sequences
(4.02 kcal/mol versus 2.74 kcal/mol), and 24% more
(7.87 kcal/mol versus 6.34 kcal/mol) if mutation is
restricted to the core residues.
Discussion

The design experiment and the I-TASSER-based
structure prediction revealed that, for 40 out of 52
test proteins (i.e., 77%), at least one of the top 10
designed sequences (cluster tags) can fold into a
structure at a backbone RMSD of b2 Å to the target
structure. Although the sequences designed in
previous works10,12,13 have a higher native recapit-
ulation than those reported here and may also
potentially fold into the target structure, this is the
first report where the large-scale applicability of a
protein design algorithm is supported by the
structures predicted for the designed sequences.
Besides having a relatively low identity to the

native sequence, our designed sequences are also
characterized by an amino acid distribution that has
a stronger preference for the hydrophobic residues.
This is mostly due to the surface regions, where the
native sequences have undergone strong evolution-
ary pressures for binding to specific polar/charged
atoms in the ligand molecules. Our designed
sequences, on the other hand, were free of such
pressures as the product of pure free-energy
optimization for fold stabilization. The free energy
of the designed sequences was consequently found
to be dramatically lower than that of the native
sequences. The optimized stability of our designed
sequences may also be compatible to a sufficient
level of solubility, since the free energy computed by
FoldX does take into account the interactions of the
protein with the solvent. Modeling these interac-
tions, hence, may have enforced the conservation of
enough hydrophilic residues on the surface (46%) to
allow a native-like solubility.
Furthermore, an extensive in silico mutational

study indicated that the point mutations that
decrease free energy are much more frequent in
the native sequences than in the designed sequences,
confirming the clearly enhanced stability of the
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latter. Although such a large gap in stability may be
indicative of a poor estimation of free energy by
FoldX, the sheer number of designed sequences with
a native-like I-TASSER model, guided by a com-
pletely different energy force field, suggests that the
estimate is plausible. Free-energy minimization
should be seen as a working paradigm for protein
design not because the designed sequences have a
high level of identity to the native sequence but
because they are likely to adopt the native fold with
an even higher stability than the native sequence.
Envisioning the use of our protein design algorithm
in practical biotechnology scenarios, we therefore
believe that the designed sequences predicted to
adopt the target fold may at least provide stable
low-resolution scaffolds, which can acquire the
desired functional properties in the presence of
mutations in key residues.
Although our Monte Carlo optimization proce-

dure can identify sequences with a very low free
energy in the target structure, the FoldX function,
like any function estimating free energy, is inevitably
affected by approximation errors. As a corrective
measure, our clustering procedure selects “consen-
sus sequences” (the cluster tags) from ensembles of
decoy sequences generated in multiple Monte Carlo
free-energy minimization trajectories. Compared to
a pure free-energy minimization, the clustering
procedure improved the average RMSD to target of
the I-TASSER models by 17%, when comparing the
first cluster tag to the global free-energy minimum,
and by 13%, when comparing the lowest-RMSD
cluster tag to the lowest-RMSD run-local minimum.
It should be acknowledged, however, that the
algorithm as a whole owes its accuracy also to the
free-energy minimization stage, which obtained an
average RMSD to target of 4.08 Å for the global free-
energy minimum and an average RMSD to target of
2.01 Å for the lowest-RMSD run-local minimum.
Another strength of the algorithm is its easy

reproducibility. Thanks to the public availability of
both SCWRL and FoldX executables, writing a basic
procedure for Monte Carlo free-energy minimization
is enough to accomplish the first stage of the
algorithm, which, as discussed above, stands on its
own as an effective protein design method. The
clustering procedure, conceptually simple but quite
laborious to tune and implement, is publicly available
at our Web site†. With respect to the use of SCWRL
andFoldX, itmust be pointed out that only the newest
versions should be used; in the case of SCWRL,
version 4.022 ensures that the side chains are produced
in an acceptable amount of time, unlike version 3.0,34

which could take hours or even days of computation
for a single sequence. Version 3.0b4 of FoldX21

brought a dramatic improvement over version 2.5.2,
†http://zhanglab.ccmb.med.umich.edu/design
under which our Monte Carlo free-energy minimiza-
tion converged almost always to sequences contain-
ing long segments of proline, possibly due to an error
in the computation of the backbone entropy term. It
may be that the abnormally high occurrence of
methionine in the present designed sequences is due
to a similar although subtler artifact in version 3.0b4.
Work on developing a sensitive physics-based poten-
tial, combined with the knowledge-based terms from
I-TASSER, is in progress.
Most of the sequences designed by our algorithm

are both highly compatible to the target structure, as
shown by protein structure modeling, and more
stable than the native sequences, as shown by the
absolute free-energy values and in silico point
mutation, thereby demanding to be validated
experimentally. Since the number of sequences to
be submitted to synthesis and experimental struc-
tural characterization is heavily limited by the costs
of such techniques, careful selection among the
cluster tags is urged. With a coverage of 77% for the
test proteins under a threshold of 2 Å, the first
cluster tag represents a strong candidate for sub-
mission. However, the accuracy and confidence at
which I-TASSER predicts protein structure encour-
age the submission of the cluster tag that I-TASSER
predicts to fold closest to the target structure.
By means of state-of-the-art methods for protein

structure prediction, the foldability of sequences
produced by protein designmay be estimated a priori
at a coarse-grained level, serving at least as a filter
against the poorly designed sequences for the more
expensive experimental validation. The idea of using
protein structure prediction to assist protein design
is not new. For example, Kuhlman et al.9 reported the
successful design of a new-fold protein, Top7, by the
iterative coupling of sequence design and structure
prediction, where the model predicted by Rosetta35

on the final designed sequence is only 1.17 Å away
from the crystal structure. In our case, however, the
algorithm of structure prediction, including both the
force field and the search engine, is completely
different from the algorithm of design, a distinction
that we believe is essential to avoid the danger of
self-proof of the designed sequences. Following
approaches like these, protein structure prediction
is bound to become an integral part of protein design
through its constant improvement over time.
All designed sequences and their I-TASSERmodels,

which can serve as control for the forthcoming
experimental synthesis, are publicly available†.

Materials and Methods

The protein design algorithm

Our protein design algorithm consists of two stages: the
first stage explores sequence space by carrying out 10

http://zhanglab.ccmb.med.umich.edu/design
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independent runs of 30,000 steps of a Metropolis Monte
Carlo free-energy minimization procedure. The free energy
of any candidate amino acid sequence is that computed on
the target rigid backbone by the FoldX (version 3.0b4)
function,21 taking the side-chain conformations as predicted
by SCWRL (version 4.0).22 Starting from a random
sequence, the Monte Carlo procedure mutates at each step
a single amino acid type by selecting at random both the
mutation position and the new amino acid type. Mutations
are accepted according to the standard Metropolis rule,5

whereby an increase in free energy by Δ is accepted with a
probability e− (Δ/T). The value of T was set at 0.3 because it
had yielded a desirable acceptance rate (around 10%) in the
training runs carried out to tune the algorithm.
The second stage of the algorithm involves the

clustering of all the decoy sequences generated in the
first stage. In essence, the clustering procedure imple-
ments in sequence space the SPICKER algorithm for
clustering model protein structures.7 Central to the
procedure is the notion of a distance between two
sequences, defined by means of the BLOSUM62 substitu-
tion matrix.23 More precisely, if two sequences are
assigned by the matrix a similarity score of b, which is
equal to the sum of the substitution scores over all residue
positions, then their distance for the purpose of clustering
is defined as (ML−b)/(ML−mL), whereML andmL denote,
respectively, the maximum and minimum similarity
scores for any two sequences of length L, so that the
sequence distance is always a number between 0 and 1.
The set of sequences to be clustered is built by picking one
decoy sequence every 20 steps of eachMonte Carlo run for
a total of 15,000 sequences, which is also close to the
memory limit of our computer nodes.
To cluster the decoy set, our procedure works by

iteratively identifying the sequence that has the most
neighboring sequences. Two sequences are defined to be
neighbors if their distance is less than some distance
cutoff. This cutoff is initially set to zero, and then
iteratively increased by a fixed amount. Upon each
increase in the cutoff, the number of neighbors of each
sequence is counted. When the sequence with the highest
number of neighbors (seed), together with them, consti-
tutes N40% of all sequences, the increase in the cutoff
terminates, and cluster counting starts. At this point, the
seed and its neighbors are identified as the first cluster of
the set, with the seed being recorded as the “tag” of the
cluster. All the sequences in the first cluster are then
removed from the set. Using the same distance cutoff, we
then repeat the count of the neighbors for the remaining
sequences to form the second cluster from the sequence
with most neighbors. This scheme is repeated until all
sequences in the initial set have been clustered or until a
maximum number of clusters (in this case 10) have been
reached. Eventually, the tag of the first (and largest)
cluster is returned as the most suitable sequence for the
target backbone, while all other cluster tags may be
regarded as plausible alternatives. We note that the 40%
threshold for the size of the first cluster was chosen by
optimizing the average TM-score of the I-TASSER models
to the target structure. However, any threshold value
between 10% and 60% generated similar TM-score results,
demonstrating that the overall performance of our design
algorithm is not sensitive to the choice of specific threshold
values in this range.
I-TASSER protein structure assembly

I-TASSER is a hierarchical pipeline developed for
protein structure prediction, which was ranked as the
best automated method for protein structure prediction in
the communitywide blind experiments of CASP719 and
CASP8.20 A detailed description has been given in
previous publications.18,36 Here, we provide an outline.
For a given target sequence, I-TASSER first threads it

through a representative PDB structure library to search
for possible template folds or supersecondary-structure
fragments using a profile–profile alignment-based thread-
ing algorithm, MUSTER.37 The continuous fragments
(with a size of N5 residues) are then excised from the
threading-aligned regions and used to assemble full-length
models, while the unaligned regions are built by ab initio
modeling. The protein conformation in the I-TASSER
simulations is represented by a trace of Cα atoms and the
side-chain centers of mass, and the reassembly process is
conducted by a modified replica-exchange Monte Carlo
algorithm.38 The structure trajectories are clustered by
SPICKER,7 and cluster centroids are obtained by averaging
the Cα atom coordinates of all clustered structures. Because
the cluster centroids generally have steric clashes and can
be overly compressed,39 the TASSER structure reassembly
is restarted from the cluster centroids obtained in the first
round of the simulation. The spatial restraints used in the
second round are taken from the centroid structures and
from PDB structures that are identified by the structure
alignment program TM-align.40 Finally, the lowest-energy
structure is selected, and an all-atom model is constructed
by REMO41 through optimization of the hydrogen-
bonding network. Here, it should be mentioned that
none of the 52 testing proteins selected for this work (see
Test protocol) is homologous to any of the 200 training
proteins used to optimize the I-TASSER force field.36

Test protocol

We tested the protein design algorithm on a set of 52
proteins selected from a predefined PISCES42 list in which
every protein has a structural resolution of ≤1.6 Å and a
sequence identity of ≤30% to any other protein. The
selected proteins divide into 12α, 13β, 19α+β, 7α/β, and 1
small. All test proteins are globular, since their well-
formed hydrophobic core justifies the application of our
free-energy minimization algorithm. Globularity was
assessed by visual inspection of the fold, and any tails
were removed where they were clearly external to the
globule. The resulting lengths of the 52 proteins range
from 51 to 149 residues. Depending on the protein size, a
single Monte Carlo run took 10–80 h on a 2.6-GHz central
processing unit, while the time required by the clustering
procedure was 5–15 min. For each protein, all cluster tags
were first evaluated in terms of amino acid identity to the
native sequence, computed over all residues and over the
core residues only. We defined a residue to be a core
residue if its relative solvent accessibility in the target
structure was below 16%.43 For this purpose, the residue's
absolute accessibility was computed by DSSP,44 while the
maximum absolute accessibility for each amino acid type
was taken from Rost and Sander.43 The cluster tags were
then submitted to I-TASSER for structure prediction. The
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comparison of the predicted model and the target
structure was based on the RMSD over the backbone
heavy atoms.

Mutational study on the native and designed sequences

For each native sequence and for each designed
sequence, the study considered all possible point mutants
obtained by replacing a single residue with a residue of a
different amino acid type. Therefore, a sequence of n
residues originated 19nmutants. The FoldX free energy of
any sequence (whether native, designed, or mutant) was
computed on the target backbone with the side-chain
conformations predicted by SCWRL. In the case of the
native sequence, the SCWRL conformations were pre-
ferred over the native ones to allow for a fairer estimation
of the variation of free energy upon mutation. This is
because the native sequence itself has a much lower free
energy (i.e., by 0.30 kcal/(mol residue)) with the native
side-chain conformations than with those predicted by
SCWRL, most likely because SCWRL is restrained to a
finite set of rotamers. Using the native side-chain
conformations in comparing the free energy of the native
sequence against that of a mutant, therefore, would not
have taken into account the background penalty, over all
side chains, imposed by SCWRL to the mutant. Inciden-
tally, the designed sequences, despite having their side-
chain conformations computed by SCWRL, have a free
energy that is much lower than that of the native
sequences with native side-chain conformations, as seen
in Results; this suggests that the designed sequences may
potentially stabilize the target fold to a greater extent than
reported in this work.
Acknowledgements

We are grateful to Dr. Yong Xiong for discussions
and to Dr. John Grime for critical reading of the
manuscript. The project was supported, in part, by
the National Science Foundation (Career Award DBI
0746198) and the National Institute of General
Medical Sciences (GM083107 and GM084222).
References

1. Drexler, K. E. (1981). Molecular engineering: an
approach to the development of general capabilities
for molecular manipulation. Proc. Natl Acad. Sci. USA,
78, 5275–5278.

2. Pabo, C. (1983). Molecular technology: designing
proteins and peptides. Nature, 301, 200.

3. Alvizo, O., Allen, B. D. & Mayo, S. L. (2007).
Computational protein design promises to revolu-
tionize protein engineering. Biotechniques, 42, 31–39.

4. Voigt, C. A., Gordon, D. B. & Mayo, S. L. (2000).
Trading accuracy for speed: a quantitative comparison
of search algorithms in protein sequence design.
J. Mol. Biol. 299, 789–803.
5. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H. & Teller, E. (1953). Equation of state
calculations by fast computing machines. J. Chem.
Phys. 21, 1087–1092.

6. Shortle, D., Simons, K. T. & Baker, D. (1998).
Clustering of low-energy conformations near the
native structures of small proteins. Proc. Natl Acad.
Sci. USA, 95, 11158–11162.

7. Zhang, Y. & Skolnick, J. (2004). SPICKER: a clustering
approach to identify near-native protein folds.
J. Comput. Chem. 25, 865–871.

8. Lorenzen, S. & Zhang, Y. (2007). Identification of near-
native structures by clustering protein docking con-
formations. Proteins, 68, 187–194.

9. Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G.,
Stoddard, B. L. & Baker, D. (2003). Design of a novel
globular protein fold with atomic-level accuracy.
Science, 302, 1364–1368.

10. Kuhlman, B. & Baker, D. (2000). Native protein
sequences are close to optimal for their structures.
Proc. Natl Acad. Sci. USA, 97, 10383–10388.

11. Larson, S. M., Garg, A., Desjarlais, J. R. & Pande, V. S.
(2003). Increased detection of structural templates
using alignments of designed sequences. Proteins, 51,
390–396.

12. Saunders, C. T. & Baker, D. (2005). Recapitulation of
protein family divergence using flexible backbone
protein design. J. Mol. Biol. 346, 631–644.

13. Ding, F. & Dokholyan, N. V. (2006). Emergence of
protein fold families through rational design. PLoS
Comput. Biol. 2, e85.

14. Dill, K. A. (1990). Dominant forces in protein folding.
Biochemistry, 29, 7133–7155.

15. Ventura, S. & Serrano, L. (2004). Designing proteins
from the inside out. Proteins, 56, 1–10.

16. Zhang, Y. (2008). Progress and challenges in protein
structure prediction. Curr. Opin. Struct. Biol. 18,
342–348.

17. Zhang, Y. (2008). I-TASSER server for protein 3D
structure prediction. BMC Bioinf. 9, 40.

18. Roy, A., Kucukural, A. & Zhang, Y. (2010). I-TASSER:
a unified platform for automated protein structure
and function prediction. Nat. Protoc. 5, 725–738.

19. Battey, J. N., Kopp, J., Bordoli, L., Read, R. J., Clarke,
N. D. & Schwede, T. (2007). Automated server
predictions in CASP7. Proteins, 69, 68–82.

20. Cozzetto, D., Kryshtafovych, A., Fidelis, K., Moult, J.,
Rost, B. & Tramontano, A. (2009). Evaluation of
template-based models in CASP8 with standard
measures. Proteins, 77, 18–28.

21. Guerois, R., Nielsen, J. E. & Serrano, L. (2002).
Predicting changes in the stability of proteins and
protein complexes: a study of more than 1000
mutations. J. Mol. Biol. 320, 369–387.

22. Krivov, G. G., Shapovalov, M. V. & Dunbrack,
R. L., Jr. (2009). Improved prediction of protein
side-chain conformations with SCWRL4. Proteins,
77, 778–795.

23. Henikoff, S. & Henikoff, J. G. (1992). Amino acid
substitution matrices from protein blocks. Proc. Natl
Acad. Sci. USA, 89, 10915–10919.

24. Koehl, P. & Levitt, M. (1999). De novo protein design:
II. Plasticity in sequence space. J. Mol. Biol. 293,
1183–1193.



776 Automated Protein Design and Validation
25. Kyte, J. & Doolittle, R. F. (1982). A simple method for
displaying the hydropathic character of a protein.
J. Mol. Biol. 157, 105–132.

26. Spector, S., Wang, M., Carp, S. A., Robblee, J.,
Hendsch, Z. S., Fairman, R. et al. (2000). Rational
modification of protein stability by the mutation of
charged surface residues. Biochemistry, 39, 872–879.

27. The PyMOL Molecular Graphics System, Version 0.99,
Schrödinger, LLC, San Diego, CA.

28. Dahiyat, B. I. & Mayo, S. L. (1997). De novo protein
design: fully automated sequence selection. Science,
278, 82–87.

29. Dobson, N., Dantas, G., Baker, D. & Varani, G. (2006).
High-resolution structural validation of the computa-
tional redesign of human U1A protein. Structure, 14,
847–856.

30. Dantas, G., Corrent, C., Reichow, S. L., Havranek, J. J.,
Eletr, Z. M., Isern, N. G. et al. (2007). High-resolution
structural and thermodynamic analysis of extreme
stabilization of human procarboxypeptidase by com-
putational protein design. J. Mol. Biol. 366, 1209–1221.

31. Zhang, Y. (2007). Template-based modeling and free
modeling by I-TASSER in CASP7. Proteins, 69,
108–117.

32. Zhang, Y. (2009). I-TASSER: fully automated protein
structure prediction in CASP8. Proteins, 77, 100–113.

33. Needleman, S. B. & Wunsch, C. D. (1970). A general
method applicable to search for similarities in amino
acid sequence of 2 proteins. J. Mol. Biol. 48, 443–453.

34. Canutescu, A. A., Shelenkov, A. A. & Dunbrack, R. L.
(2003). A graph–theory algorithm for rapid protein
side-chain prediction. Protein Sci. 12, 2001–2014.

35. Bonneau, R., Tsai, J., Ruczinski, I., Chivian, D., Rohl,
C., Strauss, C. E. M. & Baker, D. (2001). Rosetta in
CASP4: progress in ab initio protein structure
prediction. Proteins, 45, 119–126.

36. Wu, S., Skolnick, J. & Zhang, Y. (2007). Ab initio
modeling of small proteins by iterative TASSER
simulations. BMC Biol. 5, 17.

37. Wu, S. & Zhang, Y. (2008). MUSTER: improving
protein sequence profile–profile alignments by using
multiple sources of structure information. Proteins, 72,
547–556.

38. Zhang, Y., Kihara, D. & Skolnick, J. (2002). Local
energy landscape flattening: parallel hyperbolic
Monte Carlo sampling of protein folding. Proteins,
48, 192–201.

39. Zhang, Y., Arakaki, A. K. & Skolnick, J. (2005).
TASSER: an automated method for the prediction of
protein tertiary structures in CASP6. Proteins, 61,
91–98.

40. Zhang, Y. & Skolnick, J. (2005). TM-align: a protein
structure alignment algorithm based on the TM-score.
Nucleic Acids Res. 33, 2302–2309.

41. Li, Y. & Zhang, Y. (2009). REMO: a new protocol to
refine full atomic protein models from C-alpha traces
by optimizing hydrogen-bonding networks. Proteins,
76, 665–676.

42. Wang, G. L. & Dunbrack, R. L. (2005). PISCES: recent
improvements to a PDB sequence culling server.
Nucleic Acids Res. 33, W94–W98.

43. Rost, B. & Sander, C. (1994). Conservation and
prediction of solvent accessibility in protein families.
Proteins, 20, 216–226.

44. Kabsch, W. & Sander, C. (1983). Dictionary of protein
secondary structure: pattern-recognition of hydrogen-
bonded and geometrical features. Biopolymers, 22,
2577–2637.


	Computational Protein Design and Large-Scale Assessment by I-TASSER Structure �Assembly Simulations
	Introduction
	Results
	Sequence-based assessment of the designed �sequences
	Structure-based assessment of the designed �sequences
	Energy-based assessment of the designed �sequences

	Discussion
	Materials and Methods
	The protein design algorithm
	I-TASSER protein structure assembly
	Test protocol
	Mutational study on the native and designed sequences

	Acknowledgements
	References


