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INTRODUCTION

Probably the most noteworthy effort in recent years’ protein struc-

ture determination is the structure genomics that aims to obtain 3D

models of all proteins by an optimized combination of experimental

structure solution and computer-based structure prediction.1–5 Two

factors will dictate the success of structure genomics: Experimental

structure determination of optimally selected proteins and efficient

computer modeling algorithms. On the basis of 37,000 structures in

the PDB library (many are redundant),6 four million models/fold-

assignments can be obtained by a simple combination of the PSI-Blast

search and the comparative modeling technique.7 Development of

more sophisticated and automated computer modeling approach will

dramatically enlarge the scope of modelable proteins in the structure-

genomics project.8 The critical problems/efforts in the field include the

following: (1) for the sequences of strong homologies in PDB, how to

build up high-accuracy structures at a resolution level useful for virtual

ligand screening9,10 and biological function inference5,11; (2) for the

sequences with weakly/distant homologous templates, how to identify

the correct templates12,13 and how to refine the templates closer to

native by computational simulations.14 Typical to what is often found

is that, the final models are closer to the templates rather than to the

native structures15,16; (3) for the sequences without appropriate solved

template structures, how to build models of correct topology/fold from

scratch. Current successes of the ab initio modeling are limited to small

proteins.17–21 Progress along all these directions is assessed in the

CASP7 experiment under the categories of high accuracy (HA), tem-

plate-based modeling (TBM), and free modeling (FM), respectively.
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ABSTRACT

We developed and tested the I-TASSER protein

structure prediction algorithm in the CASP7

experiment, where targets are first threaded

through the PDB library and continuous frag-

ments in the threading alignments are exploited

to assemble the global structure. The final models

are obtained from the progressive refinements

started from the last round structure clusters. A

majority of the targets in the template-based

modeling (TBM) category have the templates

drawn closer to the native structure by more than

1 Å within the aligned regions. For the free-mod-

eling (FM) targets, I-TASSER builds correct topol-

ogy for 7/19 cases with sequence up to 155 resi-

dues long. For the first time, the automated server

prediction generates models as good as the

human-expert does in all the categories, which

shows the robustness of the method and the

potential of the application to genome-wide

structure prediction. Despite the success, the

accuracy of I-TASSER modeling is still dominated

by the similarity of the template and target struc-

tures with a strong correlation coefficient

(�0.9) between the root-mean-squared deviation

(RMSD) to native of the templates and the final

models. Especially, there is no high-resolution

model below 2 Å for the FM targets. These prob-

lems highlight the issues that need to be

addressed in the next generation of atomic-level

I-TASSER development especially for the FM tar-

get modeling.
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We have developed a hierarchical approach, Thread-

ing/ASSEmbly/Refinement (TASSER), to the protein ter-

tiary structure prediction problem.14,22 TASSER has

been tested in CASP623 with the threading templates

generated from PROSPECTOR_3.24 Recently, we devel-

oped a new version of structure modeler, called I-

TASSER,21 by progressively implementing the TASSER

simulations, where template alignments are generated by

four simple variants of the profile–profile alignment

(PPA) method with different combinations of the hidden

Markov model (HMM) and PSI-Blast profiles with the

Needleman-Wunsch (NW) and Smith-Waterman (SW)

alignment algorithms. In CASP7, we tested the I-TASSER

method in both the human expert (as ‘‘Zhang’’) and

automated server (as ‘‘Zhang-Server’’) sections. In this

article, we will summarize the result of I-TASSER model-

ing of all CASP7 targets. Emphasis will be made on the

template refinement for the TMB targets and the ab ini-

tio modeling for the small FM targets. Progress of I-

TASSER compared with TASSER since CASP6 and the

advantage/disadvantage of human expert over automated

server prediction will be discussed.

MATERIALS AND METHODS

The I-TASSER algorithm consists of three consecutive

steps of threading, fragment assembly, and iteration. A

flowchart is presented in Figure 1.

Threading

PPA is a simple sequence Profile-Profile Alignment ap-

proach confined with the secondary structure matches. The

alignment score between ith residue of the query sequence

and jth residue of the template structure is defined as

Scoreði; jÞ ¼
X20

k¼1
Fqueryði; kÞPtemplateðj; kÞ
þ c1d squeryðiÞ; stemplateðjÞ

� �þ c2; ð1Þ

where Fqueryði; kÞ is the frequency of kth amino acid at ith

position of the multiple sequence alignment searched by

Figure 1
Flowchart of the I-TASSER protocol. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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PSI-Blast25 or HMM26 for the query sequence against a

nonredundant sequence database (ftp://ftp.ncbi.nih.gov/

blast/db/nr.00.tar.gz and ftp://ftp.ncbi.nih.gov/blast/db/nr.

01.tar.gz); Ptemplateðj; kÞ is the summed log-odds to kth

amino acid from the multiple sequence alignment by the

PSI-Blast or HMM at jth position of the template

sequence; squeryðiÞ is the secondary structure prediction

combined from PSIPRED27 and SAM26 for ith residue of

the query sequence; and stemplateðjÞ is the secondary struc-

ture assignment by DSSP28 for jth residue of the template.

The combination of PSIPRED and SAM is done by sum-

ming up the raw probabilities predicted by these two pro-

grams on the helix/strand/coil states and then selecting the

state of the highest probability which is followed by the
smoothing of the singular secondary structure states along
the sequence. The NW29 or SW30 dynamic programming
algorithm is used to identify the best match between query
and template sequences. The four parameters, c1, c2 in Eq.

(1), the gap opening penalty (c3), and the gap extension

penalty (c4) are decided by trial and error on the ProSup

benchmark.31 Depending on the profiles generated from

PSI-Blast or HMM search and the alignment search by the

NW global or SW local dynamic programming algorithms,

four complementary PPA threading alignments are used in

the consequent I-TASSER assembly. The target sequences

will be automatically categorized by the significance of the

PPA alignments: An Easy target is defined when at least two

PPA alignments have a Z-score higher than 8; if there is no

alignment with a Z-score > 7, the target will be defined as a

Hard target; others will be Medium targets.

Structure assembly simulation

On the basis of PPA threading alignments, target

sequences are divided into aligned and unaligned regions.

The fragments in the aligned regions are directly excised

from the template structures and allowed to rotate and

translate in an off-lattice system.14 The unaligned regions

are modeled by ab initio simulations in a cubic lattice sys-

tem of grid size 0.87 Å.20 The global topology is decided

by the relative reorientation of the continuous fragments

while the on-lattice modeling serves as the linkage of the

rigid-body fragment movements. Protein conformations

are represented by a trace of Ca atoms and side-chain

centers of mass (SC). The force field consists of a variety

of knowledge-based energy terms describing SC pair-wise

interactions and short-range Ca correlations,20,32 pro-

pensity to the consensus secondary structures predictions

from PSIPRED27 and SAM,26 residue-based solvent acc-

essibility by neural network training,21,33 secondary

structure specific backbone hydrogen-bonding,34 and the

consensus SC contact and Ca distance constraints

extracted from the multiple threading alignments. Weight-

ing balances between the energy terms are trained in the

Easy/Medium/Hard categories separately by the maxi-

mization of the total energy-TM-score correlation based

on an ensemble of continuously distributed structure

decoys.20 The structure assembly procedure is driven by a

modified replica-exchanged Monte Carlo simulation35,36

and the trajectories in low temperature replicas are clus-

tered by SPICKER.37 The cluster centroids are obtained

by averaging the coordinates of all clustered decoys and

are ranked based on the structure density.

Iteration

Starting from the selected SPICKER cluster centroids,

we implement the TASSER assembly refinement simula-

tion again. While the inherent I-TASSER potential keeps

unchanged in the second run, the external constraints are

pooled from the initial high-confident restraints from

PPAs, the restraints taken from the cluster centroid struc-

tures, and the restraints from the PDB structures searched

by the structural alignment program TM-align.38 The

purpose of the iteration is to remove the steric clashes of

cluster centroids and to refine the topology as well.21 The

conformations of the lowest energy in the second round

are selected. Finally, Pulchra39 is used to add backbone

atoms (N, C, O) and Scwrl_3.040 to build side-chain

rotamers.

Multiple domain proteins

If any region with >80 residues has no aligned resi-

dues in at least two strong PPA alignments of Z-score >
8, the target will be judged as a multiple domain protein

and domain boundaries are automatically assigned based

on the borders of the large gaps. As a defect, this multi-

ple-domain assignment does not include the cases which

have all domains simultaneously aligned. I-TASSER simu-

lations will be run for the full chain as well as the sepa-

rate domains. The final full-length models are generated

by docking the model of domains together. The domain

docking is performed by a quick Metropolis Monte Carlo

simulation where the energy is defined as the RMSD of

domain models to the full-chain model plus the recipro-

cal of the number of steric clashes between domains. The

goal of the docking is to find the domain orientation

that is closest to the I-TASSER full-chain model and has

the minimum steric clashes. The final models docked

from I-TASSER domains are submitted to CASP7.

Predictions in human section

The above I-TASSER modeling procedure is fully auto-

mated and used for the predictions in the server sections.

The human section prediction uses essentially the same

procedure, except for the following differences: (1) the do-

main border assignment has been made based on visual

view of the 1D threading sequence alignments and 3D tem-

plate structures, which are further adjusted by the CASP7

domain server predictions from Robetta-Ginzu41 and Ma-

OPUS-DOM; (2) for the hard targets that have no strong

PPA hit with a Z-score > 7, additional alignments from the

Y. Zhang
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CASP7 servers, including FUGUE,42 HHpred,43 mGen-

Threader,44 and SP3,45 are exploited as I-TASSER starting

structures; (3) I-TASSER simulations run within a relatively

longer CPU time in the human section.

RESULTS

Summary

Ninety-six effective targets in CASP7 have been split

into 124 domains by the assessors which include 28 HA-

TBM, 77 TBM, 4 TBM/FM, 15 FM, and 1 decoration tar-

gets. For conciseness, we will divide our analysis in two

big categories of TBM (including HA-TBM and TBM)

and FM (including TBM/FM and FM).

In Table I, we present a summary of the average per-

formance of Zhang-Server and Zhang compared with the

best threading templates used by I-TASSER. Column 5 is

the average RMSD and the alignment coverage of the best

threading template in different categories. Here, the best

template refers to the template of the highest TM-score to

the native structure among all the templates exploited by

I-TASSER. It is usually worse than the real best template

by the structural alignment in the PDB library, identifica-

tion of which needs the native structure information.38

Obviously, the PPA threading identified much better

alignments for the TBM targets than that for the FM tar-

gets. On average, the PPA alignments have a RMSD 5.0 Å

over 90% aligned regions for the TBM targets and a TM-

score 0.66. For the FM targets, the templates have an aver-

age RMSD 13.5 Å in 81% aligned regions. The average

TM-score (0.21) is close to that expected for the random

structure matches (0.17),46 understandable because by

definition there is no appropriate templates in PDB for

the FM targets. Overall, the incorporation of the CASP7

servers as taken in the human prediction results in a

slightly better set of threading alignments in both TBM

and FM categories. Here, many TBM targets are also cate-

gorized as Medium/Hard targets by the PPA system and

the threading alignments from the CASP7 servers are

therefore exploited. The average TM-score of all templates

increases from 0.591 to 0.603 (by 2%).

Column 7 is the average RMSD to native of the first I-

TASSER models calculated in the same aligned region as

in templates. The RMSD decreases (�1 Å) compared

with the templates in these regions therefore reflects the

improvement purely by the I-TASSER reorientation of

the secondary structure fragments. It should be men-

tioned that I-TASSER does not attempt to ‘‘re-tune’’ the

alignments because the local fragments are kept rigid

during the simulations. The fragment repacking is driven

by the inherent I-TASSER force field and the external

consensus restraints. The columns 9 and 12 show the

TM-score of the first and the best I-TASSER models. On

average, I-TASSER reassembly results in a TM-score

increase by �14% in the TBM category. On the basis of

the previous statistics,23 a simple loop connection can

lead to a TM-score increase of 3.5% because of the

length elongation. Therefore, about 10% of the TM-score

increase may be due to the topology improvements. For

the FM targets, the TM-score increase is about 70%,

more significant than that for the TBM targets, since the

low TM-score templates have much more space for

improvement. In contrast, the RMSD improvement from

13 Å to 10–12 Å for the FM targets sounds marginal,

partially because RMSD is not an appropriate quality for

distinguishing the topology in this range of accuracy.46

Column 13 is the consensus contact constraints col-

lected from the PPA threading alignments (or PPA plus

CASP7 threading servers for the Medium/Hard targets in

the human predictions). For the Easy/Medium/Hard tar-

gets, top 20/30/50 templates are employed with a contact

occurring frequency cutoff of 0.2/0.1/0.1. Because of the

differences in the alignment quality, the average accuracy

and coverage of contact restraints in TBM is much

higher than that in the FM category. Even for the FM

targets, the contact is still much better than the random

prediction. (Wu ST, Zhang Y. Could the sequence-based

Table I
Average Results of I-TASSER Predictions in Both Human and Server Sections

Type Ntarget Size

Best template First model Best model Constraints

Rali
a/Frab (%) TM Rali

a Rall
c TM Rali

a Rall
c TM Acd/Cove (%) Erf

Zhang-Server TBM 105 161 5.0/90 0.659 4.0 4.7 0.729 3.4 3.9 0.750 0.40/156 1.5
FM 19 131 13.5/81 0.211 12.3 13.2 0.302 10.2 10.9 0.364 0.20/92 3.2
ALL 124 157 6.3/89 0.591 5.3 6.0 0.664 4.5 5.0 0.691 0.38/146 1.8

Zhang TBM 105 161 4.9/91 0.670 3.8 4.4 0.740 3.3 3.8 0.761 0.42/159 1.4
FM 19 131 13.2/82 0.239 11.8 12.7 0.341 9.5 0.3 0.378 0.18/130 3.0
ALL 124 157 6.2/90 0.603 5.0 5.7 0.679 4.3 4.8 0.702 0.39/151 1.7

aRali, RMSD (in Å) to native in the threading aligned regions.
bFra, Fraction of the aligned residues relative to the query sequence.
cRall, RMSD (in Å) to native in full-length.
dAc, Accuracy of the predicted contacts.
eCov, Number of predicted contacts divided by the number of native contacts.
fEr, Error (in Å) of the best in up to four predicted long-range distance restraints for each Ca pair.
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contact prediction be useful for protein tertiary structure

modeling? Submitted for publication 2007.) Having in

mind that a set of contact prediction with an average ac-

curacy higher than 0.22 will be helpful for ab initio MC

simulations to drive the topology at the correct direc-

tion,20 it is estimated that in about half of the FM cases

the employment of the restraint prediction should be

better than not using them in the ab initio modeling. It

should be mentioned that the purpose of the contact

collections is to provide helpful constraints for the

I-TASSER simulation rather than to generate the most

accurate contact prediction. Certainly, if we collect the

contacts only from the most confident templates and

based on a higher frequency cutoff, the accuracy of the

contacts may be higher and the coverage will be lower.

But we found the current setting of the template number

and cutoff parameters work the best for I-TASSER in our

benchmark test. For each of the 10 residues, we generate

up to four distance predictions for the long-range Ca pairs

(with |i2j| > 6). Column 14 shows the average difference

between the native Ca distances and the best predicted

distances. Obviously, the distance map prediction of TBM

is again more accurate than that of the FM targets.

In Figure 2, we present the comparison of the first

I-TASSER models and the best threading templates for

both server and human predictions. There is a consistent

improvement of final models over templates based on

RMSD and TM-score. There is no systematic difference in

template refinements with regard to the targets from TMB

or FM targets and to the models by Zhang or Zhang-

Server. One notable exception is T0258 at Figure 2(c),

where the RMSD of the final model by human is 3.3 Å

worse than the best template (from 5.3 Å to 8.6 Å). The

main reason is that our human prediction combines the

threading alignments from the CASP7 servers with wrong

templates for the target although our in-house PPA

threading programs hit the best template of 2a2pA. The

mixture of bad server templates results in the biggest clus-

ter having a wrong orientation at the C-terminal, although

the third human model has a correct topology of full-

length RMSD 5.3 Å. There are also some cases where the

big differences of RMSD in templates and models may not

be entirely due to the structural topology improvement.

In T0347_1, for example, RMSD of the template is

reduced from 18.2 Å to 5.2 Å mainly because the misor-

ientated tails in the template has been corrected by the I-

Figure 2
Comparison of the first predicted models by human (‘‘Zhang’’) and server (‘‘Zhang-Server’’) with respect to the best exploited templates. The RMSD is calculated in the

same set of aligned residues. The TM-score is calculated in the aligned regions for the templates and in full-length for the models.
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TASSER reassembly. But the core region does not change

much in the I-TASSER modeling and the overall TM-score

increases only by 0.12 in this case. Because the templates

from the CASP7 servers are sometime better than our in-

house PPA templates, the RMSD improvement over the

templates in the human prediction appears less dramatic

in some of those cases [see Fig. 2(c)].

Examples

In the upper panel of Figure 3, we show four represen-

tative examples where I-TASSER successfully refines the

templates from high RMSD (3.3–16 Å) to low RMSD

(1.5–3 Å). In all these cases, the consensus contact pre-

dictions have a high accuracy and coverage, that is

T0338_1 with 0.5/142%, T0363 with 0.41/162%, T0369

with 0.36/198%, T0370 with 0.43/173%. The consensus

restraints combined with the optimized I-TASSER inher-

ent potential serve as the major driven force for the

refinement of the templates. In all of the four cases, the

accuracy and coverage of the constraints are higher than

that extracted from the best individual template (data

not shown), which helps to refine the loops and tails and

sometime the global topology such as T0369.

In the lower panel of the Figure 3, we also show four

FM examples where I-TASSER builds models of correct

topology with a RMSD of 3–4 Å. Figure 4 shows a more

detailed analysis of the typical example of T0382. It is a

new fold protein from Rhodopseudomonas palustris

CGA009 crystallized by the structure genomics project.47

The topology of T0382 consists of six joggled a-helixes.
The left panel of the Figure 4 shows the top five tem-

plates hit by the multiple threading programs used by

I-TASSER, all having correct local second structure

elements but incorrect global topologies with the best

RMSD of 9.3 Å from 1xm9A1 (TM-score 5 0.28). Our

contact prediction program generates 148 side-chain con-

tacts with 37 contacts correct (accuracy 25%). The aver-

age error of the best predicted Ca distances is 2.2 Å.

I-TASSER cuts the fragments from the template align-

ments and reassembles the topology under the guidance

of the predicted restraints and the inherent potential,

which results in a model of full-length RMSD 3.6 Å and

TM-score 0.66 (right panel of Fig. 4). The correlation of

I-TASSER energy and the RMSD of the structure decoys

is 0.72 which demonstrates the consistency of the exter-

nal restraints and the inherent force field.

Human versus server predictions

The data in Table I have shown that the overall per-

formance of our human predictions is slightly better

than the automated server prediction. The improvement

mainly occurs in the FM category where the average

TM-score of the first model of the human prediction

increases from 0.302 to 0.341 by 13% compared with the

server. The increase of TBM targets is modest from 0.729

to 0.740 by 1.5%, which lead to an overall TM-score

increase by 2.3% (0.664 to 0.679) for the first model.

The overall increase of the best in top-five models for all

targets (1.6%) is lower than that of the first model

(2.3%), which indicates that the employment of multiple

CASP7 servers tends to improve the ranking of the

model rather than the best topology.

In Figure 5, we present a detailed comparison of the

human versus server predictions for the first model. Sim-

ilar to the tendency of Table I, for the high quality mod-

els (mainly TBM targets), for example, the models of

RMSD < 5 Å or TM-score < 0.75, there is no notable

difference between human and server. But for the hard

targets, there is a tendency that the human prediction

generates more models with better scores than the server.

There are several reasons for the human prediction

outperforming the server prediction. (1) For hard targets

when PPA programs have no confident hit, we exploited

multiple threading templates from the CASP7 servers.

Figure 6(a) represents one example where a better tem-

plate 1kk1A hit by HHsearch43 has been exploited by the

human prediction, which results in a TM-score increase

from 0.36 to 0.45. (2) Human visual view of the multiple

threading alignments and the template tertiary structures

usually leads to a better domain parser than that by the

Figure 3
Representative examples for the TBM (upper panel) and FM (lower panel)

targets. The thin lines represent the backbone of the experimental structures and

the thick lines are the threading templates or the final models. The two number

under the TBM models are the RMSD to native in the threading aligned regions

and the RMSD of the full-length. Blue to red runs from N- to C-terminals.

[Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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simple domain assignment procedure used by server (see

section ‘‘Materials and Methods’’). For example, T0289 is

a two-domain protein and PPA threading that hit both

domains of 2bconA with high Z-scores. The server pre-

diction fails to split the domains based on the sequence

alignments and therefore folds the entire chain together.

In the human prediction, by viewing the template struc-

tures, we correctly split the target into two domains at

Residue ILE224 and fold the domains separately. As a

result, the quality of both domains has been improved

since I-TASSER tends to handle better the simulation of

small single proteins partially due to the conformational

entropy reduction.21 The TM-score of the final human

prediction increases from 0.68 to 0.7 for T0289_1 and

from 0.37 to 0.51 for T0289_2. Figure 6(b) is the struc-

ture superposition for T0289_2. (3) The human predic-

tion can benefit from the longer CPU running time.

Because of the current limited computing power at our

lab, most of the hard targets in the server prediction did

not run sufficient trajectories as in benchmark. Figure

6(c) shows an example of T0382 where I-TASSER needs

to reconstruct the models from wrong templates. In

the server prediction, the average energy of the largest

cluster is 23024 kT. But by a longer run, the human

simulation reached a cluster of average energy of 23264

kT, which results in a TM-score improvement from 0.54

to 0.66.

There are also some cases where the human prediction

can be worse than the server prediction. Figure 6(d) is a

typical example from the T0358 where the server predic-

tion generate better models because our in-house PPA

threading programs consistently hit the correct template

from 2a2pA but with weak Z-scores. In the human

prediction, we exploit the multiple templates from the

CASP7 servers that actually have hit worse templates.

The incorporation of incorrect templates can result in

Figure 4
Structure comparison of the threading templates, the final model, and the experimental structures for the target T0382. Blue to red runs from N- to C-terminals.

Figure 5
Comparison of the human and the server predictions for all 124 domains/

targets.
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worse constraint data and therefore reduce the perform-

ance of I-TASSER modeling. For the first model, the

server prediction has a RMSD of 5.8 Å but the human

has a RMSD 8.5 Å with a disoriented C-terminal.

DISCUSSION

We have developed and tested a new version of

I-TASSER algorithm at the CASP7 experiment. Com-

pared with the original version of TASSER,14,22,23 new

components include: (1) a new set of secondary structure

confined PPA threading programs are developed; (2) new

energy terms including neural network solvent accessibil-

ity predictions are incorporated and reparameterized on

the basis of structure decoys in different categories; (3) a

two-round progressive assembly simulation is developed

for removing structure clashes and refining models.

What went right?

One of the most important highlights of the I-TASSER

simulations is the ability of template refinement. Overall,

about 1 Å RMSD reduction can be obtained within the

aligned residues compared with the best threading align-

ment. The full-length TM-score increases by about 14%

where about 10% is probably because of the topology

reorientation of the secondary structure fragments and

the rest may be due to the size elongation by filling the

unaligned gaps. One of the major contributions to the

structure improvement is the employment of consensus

spatial constraints of multiple templates which is usually

of higher accuracy than that from individual templates.

Our benchmark test21 shows that the combination of

four PPA threading alignments performs better than that

with the best PPA-I program from PSI-Blast profile and

NW global alignment. The CASP7 results demonstrate

that including other threading resources can result in

Figure 6
The examples where the human predictions generate better (a–c) and worse (d) models than that by the server predictions. The thin lines represent the backbone of the

experimental structures and the thick lines are the final models. Blue to red runs from N- to C-terminals. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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further improvements, especially for the hard targets.

The second driven force for the structure improvement is

the optimized I-TASSER inherent potential. The off-line

analysis shows that in almost all the successful cases there

is a strong correlation between the inherent potential and

the external restraints. For the less successful targets, this

correlation is weak. Finally, the requirement for the chain

connectivity also helps to improve the reassembly of the

fragments from some structurally unphysical threading

alignments. Overall, in comparison with the physics

based structural modeling approaches, the success of the

I-TASSER method is largely due to the successful utiliza-

tion of the evolutionary relations of the target and the

solved proteins where both the spatial constraints and

the knowledge-based reduced potential of I-TASSER

come from the target–template alignments and the statis-

tics of the PDB structures.

The procedures of our human and the server predic-

tions are essentially the same. If ignoring the minor effects

from taking the multiple CASP7 servers for the hard tar-

gets, the overall performance of Zhang and Zhang-Server

is almost indistinguishable as shown in Table I and Figure

5. One goal of the I-TASSER development is to release the

heavy human intervention from the structure modeling

procedure. The automatization and robustness of the

algorithms are particularly important for the application

to the large-scale automated structure predictions. The

I-TASSER server is freely available at our website: http://

zhang.bioinformatics.ku.edu/I-TASSER.

What went wrong?

Among the 19 free-modeling targets, I-TASSER gener-

ates correct topology for seven of them (about 1/3) up to

155 residues long with RMSD < 6.5 Å or TM-score >
0.5. Despite the success on some of the FM targets, the

overall quality of I-TASSER modeling is strongly corre-

lated by the quality of the templates with a Pearson cor-

relation coefficient of 0.89 for RMSD and 0.95 for TM-

score in the server section (from [Fig. 2(a,b)]). For sev-

eral small FM proteins below 120 residues, I-TASSER still

failed to generate the correct topology. The failure often

occurs when we tried to fold the small hard domains to-

gether with another big strong-hit domain. The structure

phase space of small domains has not been sufficiently

explored because most of the Monte Carlo movements

are devoted to the bigger domain regions in these cases.

Moreover, when the multiple domain structure decoys

are clustered, the structures of the big domain part will

dominate the RMSD matrix and therefore the lowest

free-energy state of the small domains can not be identi-

fied by normal SPICKER program.37 So it will be helpful

to develop robust domain parser programs to split the

domains correctly and fold the individual domain sepa-

rately. Second, the more essential reason for the failure is

that the I-TASSER potential and the external restraints

cannot provide appropriate long-range interaction infor-

mation for the FM targets. We are in the process of

examining the possibility of exploiting long-range con-

tact predictions from other resources (Wu ST, Zhang

Y. Could the sequence-based contact prediction be useful

for protein tertiary structure modeling? Submitted for

publication 2007.).

Another issue of our modeling is the suboptimal sec-

ondary structures for several small hard proteins, for

example T0304. The main reason is that current I-

TASSER modeling is based on a reduced Ca and side-

chain center of mass model where the hydrogen-binding

is only considered approximately based on the backbone

Ca atoms. The other atoms are added by external pro-

grams of Pulchra39 and Scwrl40 after the simulation and

clustering. While for the hard targets, the goal of I-

TASSER is to generate correct topology, no effort has

been made for the optimization of the hydrogen-bonding

network except for that of backbone Ca atoms.34 The

development of an atomic I-TASSER, which embodies all

heavy atoms in the modeling and aims to optimize the

hydrogen-bonding of both backbone and side-chain

atoms, is under progress.
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