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Abstract: We have developed SPICKER, a simple and efficient strategy to identify near-native folds by clustering
protein structures generated during computer simulations. In general, the most populated clusters tend to be closer to the
native conformation than the lowest energy structures. To assess the generality of the approach, we applied SPICKER
to 1489 representative benchmark proteins �200 residues that cover the PDB at the level of 35% sequence identity; each
contains up to 280,000 structure decoys generated using the recently developed TASSER (Threading ASSembly
Refinement) algorithm. The best of the top five identified folds has a root-mean-square deviation from native (RMSD)
in the top 1.4% of all decoys. For 78% of the proteins, the difference in RMSD from native to the identified models and
RMSD from native to the absolutely best individual decoy is below 1 Å; the majority belong to the targets with
converged conformational distributions. Although native fold identification from divergent decoy structures remains a
challenge, our overall results show significant improvement over our previous clustering algorithms.
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Introduction

Given a perfect energy function (e.g., the Go-like potential1), the
native conformation of a protein can be identified on the basis of
its energy (i.e., the native state is the minimum energy conforma-
tion). Furthermore, of all the energetically and structurally well-
defined clusters, the native state should be the most populated at
low temperatures. In the more realistic situation encountered in
protein structure prediction, the lowest energy state is usually not
the conformation nearest to native because of imperfections in the
force field. But given a reasonable energy function, these near-
native states should be still among the most populated states at low
temperature.2 Based on this hypothesis, approaches based on struc-
ture clustering have been used for fold selection.2,3

There are two issues involved in cluster-based approaches to
native fold identification. First of all, for a set of n structure
decoys, an n � n matrix of RMSD distances for all decoy pairs
needs to be constructed; for very large numbers of structures, the
size of this matrix could easily exceed the memory of contempo-
rary computers. The problem becomes more acute when parallel
sampling methods are used4–6 and a large number of decoy
structures from different replicas need to be clustered. In previous
approaches using SCAR,3 Betancourt and Skolnick implemented
clustering in two steps: the structures in each replica are clustered,
and then the resulting cluster centroids are clustered to obtain the

final models. Because the matrix size is reduced compared with the
matrix of the entire decoy set, this two-step clustering process
requires much less computer memory. However, the cluster pop-
ulation information present in the first pass is neglected in the
second pass; therefore, the relative cluster population is not ap-
propriately accounted for.

Second, the distribution of decoy conformations depends on the
energy landscape, which can be very different depending on the
level of prediction difficulty. For a comparative modeling target,
the homologous templates provide consensus spatial restraints;7

thus, the resulting structures will be tightly distributed near their
templates. On the other hand, for a “New Fold” target, the ab initio
based simulations,8–10 generate much more divergent structures.
Therefore, the definition of appropriate cutoff values is important
for the correct identification of representative folds.

To address these issues, we describe a new clustering program,
SPICKER, in which clustering is performed in a one-step proce-
dure using a shrunken but representative set of decoy conforma-
tions and the pairwise RMSD cutoff is determined by self-adjust-
ing iteration. To assess its generality, we apply SPICKER to a
large-scale benchmark set of 1489 nonhomologous proteins that
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represent all protein structures in the PDB �200 residues; each
protein has up to 280,000 decoy structures obtained from low-
temperature replicas generated by our threading/assembly/refine-
ment program TASSER.11

Methods

The SPICKER fold identification algorithm consists of decoy
shrinking, cutoff iteration, cluster identification, and final model
combination, a flow chart. A flow chart of the procedure is pre-
sented in Figure 1.

Decoy Selection

Decoy structures are taken from computer simulations, which
could be, for example, Monte Carlo or Molecular Dynamics tra-
jectories.10–12 In principle, to find the most representative struc-
tures, we should take as many structures as possible. However,
because of computer memory limitations, we cannot use all the

structures when their number exceeds 104. Here, we shrink the
decoy set by taking the lowest energy conformation in each subset
of n/S decoys, with the shrinkage factor S � 104, when n is too
large for the pairwise RMSD matrix to fit into memory. When the
final time interval between the selected snapshots is shorter than
the self-correlation time to crossenergy barriers, this reduction in
the number of decoys does not influence the decoy distribution in
the important regions of phase space. To confirm this, we show in
Figure 2 the average clustering result of 100 randomly selected
targets, when different values of the shrinkage factor S are used to
select structures from the 280,000 decoys. When the number of
clustered structures is larger than about 4000, well within com-
puter memory capacity, there is no obvious dependence of the
clustering results on the number of structures used, although the
average RMSD from native to the absolute best individual decoy
decreases slightly as the number of selected structures increases.

RMSD Cutoff Used for Clustering

The pairwise RMSD cutoff Rcut, under which two structures are
considered as clustered neighbors, is iteratively decided by the
interplay of the cutoff and the ratio of number of decoys in the
most populated cluster to the total number of decoy structures. The
initial Rcut is set to 7.5 Å. If the structures are too tightly distrib-
uted, Rcut will gradually decrease until the first cluster includes less
than 70% of the total number of structures or until Rcut is 3.5 Å. On
the other hand, if the structures are too divergent, Rcut will grad-
ually increase until the first cluster includes more than 15% of
structures or until Rcut � 12 Å.

Figure 2. RMSD to native of cluster models and the best individual
structure in a shrunken decoy set vs. the number of structures of the
compressed decoy set used in SPICKER clustering. The shown data
are averaged over 100 target proteins, each having originally up to
280,000 decoy conformations generated by TASSER.11 The lines
connecting the points serve to guide the eye.

Figure 1. Flow chart of the SPICKER clustering algorithm.
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Cluster Identification

The members of each cluster are constructed as follows: for a
given Rcut, the first cluster contains the structure with the most
neighbors (this structure comprises the “cluster center” structure),
as well as the structures of all its neighbors. To identify the second
cluster, all the structures in the first cluster are excluded and the
second cluster contains the structure with the most number of
neighbors in the remaining structure decoys, as well as the struc-
tures of all its neighbors. This process is iterated so the lth cluster
identified contains the structure with the most neighbors in the
remaining decoys after excluding all members of the preceding l �
1 clusters, plus their associated neighbor structures.

Final Model Construction

The decoy structures in each cluster are used to construct a
representative model for the cluster. There were two ways to select
these representative models:2,3 i.e., either selecting the individual
“cluster center” structure that was initially used to define the
cluster, or superimposing all members of the cluster on the “cluster
center” structure and then averaging all the superimposed struc-
tures to define the cluster centroid. Although the averaged centroid
structure usually has a lower RMSD to native than the “cluster
center” structure, global averaging can result in irregular local
structures when the cluster cutoff is high. To address this issue, we
divide the protein into up to five subchains, each containing more
than 20 residues, and average the subchains separately after the

superposition of the subchains onto the “cluster center” structure.
The resulting local structures of the combined model are less
irregular than the centroid but are of lower RMSD to native than
the individual “cluster center” structure. Here it should be noted
that, in this process, all decoy structures (including previously
clustered structures) with an RMSD to the “cluster center” struc-
ture below Rcut are used to build the final model.

Results and Discussions

Benchmark Set of Decoy Structures

To comprehensively evaluate the methodology, we applied the
SPICKER algorithm to a representative set of PDB proteins com-
prised of 1489 targets. Here, for each protein the decoys are generated
by TASSER,11 a recently developed protein structure assembly algo-
rithm, designed to build full-length protein models by rearranging the
continuous fragments excised from threading templates under the
guide of an optimized force field.10 The conformational phase space
is searched using a parallel hyperbolic Monte Carlo simulation.6 This
benchmark set includes 877 targets that have templates identified with
high confidence by our threading program PROSPECTOR_3,13

called “Easy” targets. In this set, the structure decoys are relatively
tightly distributed, because the templates have high alignment cover-
age and consensus alignments, which impose consistent restraints
onto the Monte Carlo structure assembly processes. The benchmark

Table 1. Summary of Clustering Results from 1489 Proteins by SPICKER and SCAR.a

Easy targets (877 cases) Medium/hard targets (612 cases)

SPICKER SCAR SPICKER SCAR

BTb T5c T1d BTb T5c T1d BTb T5c T1d BTb T5c T1d

�RMSD�e 3.35 3.75 4.79 3.29 4.28 5.58 7.06 8.01 10.49 6.92 8.83 11.53
Nwinner

f 0 767 653 406 92 213 0 485 396 318 121 213
NRMSD�6.5

g 810 769 682 813 734 611 296 221 121 306 177 87
NRMSD�6.0 785 756 652 789 711 590 268 191 107 275 155 74
NRMSD�5.5 763 737 615 764 680 555 223 167 90 236 127 66
NRMSD�5.0 740 700 592 743 644 519 195 132 74 201 104 56
NRMSD�4.5 706 658 541 714 588 467 159 102 58 167 84 45
NRMSD�4.0 669 608 487 673 533 403 120 76 45 124 65 34
NRMSD�3.5 599 520 411 609 440 321 94 61 34 96 48 23
NRMSD�3.0 493 413 320 508 342 241 64 38 24 66 37 17
NRMSD�2.5 359 291 223 368 233 146 42 24 17 44 25 10
NRMSD�2.0 212 176 124 223 125 73 29 17 8 28 11 3
NRMSD�1.5 85 58 43 90 39 22 13 8 6 12 4 1
NRMSD�1.0 17 10 9 17 5 3 7 5 4 6 3 1

aThe data from SPICKER and SCAR are denoted by bold and italic fonts, respectively. All RMSD numbers are in
Angstroms.
bThe best structure of lowest RMSD to native among all the decoys used in clustering process.
cThe best model in top five clusters.
dThe first ranked cluster according to the cluster density in SPICKER or according to the average energy in SCAR.
eAverage RMSD to native over 877 targets in Easy set and over 612 targets in Medium/hard set.
fThe number of targets that have a lower RMSD to native between SPICKER and SCAR models.
gThe number of targets that have a RMSD to native below some threshold value.
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set also includes another 612 “Medium/Hard” protein targets that
PROSPECTOR_3 assigns templates with lower confidence. These
templates typically have good structural alignments (i.e., in more than
90% of cases, the RMSD to native in structure alignments is below
6.5 Å); but in only 1/3 of the cases is the RMSD to native in the
threading-based alignments below 6.5 Å.13 The alignments are, on
average, also of lower coverage than for the “Easy” set. Thus, the
structure decoys are more divergent as compared to the “Easy”
targets. All the structure decoys, together with the clustered models,
are available on our Web site: http://bioinformatics.buffalo.edu/abini-
tio/1489.

Summary of Clustering Results

In Table 1, we list a summary of clustering results from SPICKER
and SCAR. Because SCAR uses all the generated structure decoys,
the RMSD of the best individual structures is lower than the shrunken
decoys by SPICKER. However, the RMSD of final clustered models
is lower in SPICKER. For example, for the “Easy” targets, we have

608/877 cases that have at least one model in top five clusters with a
RMSD to native below 4 Å using SPICKER; when SCAR is used,
this number is 533/877. For the “Medium/Hard” targets, the RMSD of
the best of the top five clusters generated by SPICKER is below 6.5
Å in 221/612 cases; using SCAR, this number is 177/612. Overall, if
we look at the RMSD of the best of the top five clusters, in 1252
cases, SPICKER does better; and in 213 cases, SCAR does better. If
we only focus on the first ranked cluster, in 1049 cases SPICKER
does better and in 426 cases SCAR does better.

Comparison of Models with the Best Individual Structures

For a given set of decoy structures, the goal of clustering is to
provide models that are as good as the best individual structures
found in the decoy set. Because the final models in SPICKER are
obtained by local averaging of clustered decoys, occasionally the
combined model can be even closer to native than the best indi-
vidual structures. For example, in 194 of the 1489 protein targets,
one of top five SPICKER models has an RMSD to native smaller
(in a the range up to 0.9 Å) than any individual structure; 145 of
them belong to the “Easy” set and 49 to the “Medium/Hard” set.

However, as shown in the Table 1, the overall quality of the
structure provided by clustering is still worse than the best indi-
vidual structure. For the “Easy” targets, the difference between the
RMSD from native of the best of the top five clusters and the
RMSD from native of the best individual structure is about 0.4 Å
on average, while this difference in “Medium/Hard” cases is
around 1 Å on average. If we compare the first ranked cluster with
the best individual structures, the former is about 1.5 Å farther
from native for the “Easy set” and 3.5 Å farther from native for the
“Medium/Hard” set. In Figure 3 and Table 2, we present the
distribution of the difference between the RMSD errors of the best
of the top five clusters and that of the best individual structures,
i.e.,

�RMSD

� “RMSD from native to the best of top five cluster models”

—“RMSD from native to the absolutely best decoy.” (1)

Figure 3. RMSD distribution of the best in top five models with
respect to the best individual decoy structure. �RMSD is the differ-
ence between RMSDs from native to the model and from native to the
decoy, as defined in eq. (1).

Table 2. Comparison of Top Five SPICKER Models with the Best Individual Decoy Structure.a

Easy
targets

Medium/hard
targets In total

�RMSD � 0.5 Å 615 (70.1%) 222 (36.3%) 837 (56.2%)
0.5 Å � �RMSD � 1.0 Å 165 (18.8%) 164 (26.8%) 329 (22.1%)
1.0 Å � �RMSD � 1.5 Å 56 (6.4%) 103 (16.8%) 159 (10.7%)
1.5 Å � �RMSD � 2.0 Å 22 (2.5%) 67 (10.9%) 89 (6.0%)
2.0 Å � �RMSD � 2.5 Å 14 (1.6%) 22 (3.6%) 36 (2.4%)
2.5 Å � �RMSD � 3.0 Å 2 (0.2%) 17 (2.8%) 19 (1.3%)
3.0 Å � �RMSD 3 (0.3%) 17 (2.8%) 20 (1.3%)
In total 877 (100%) 612 (100%) 1489 (100%)

a�RMSD denotes the difference of the RMSD errors of identified models and the best individual
decoys and is defined in eq. (1). The numbers in parentheses are the percentage of protein targets in
the specified protein sets.
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For “Easy” targets, for around 90% of the cases, SPICKER iden-
tifies models �1 Å worse from native than the best decoy; for
“Medium/Hard targets, this happens in only 63% of the cases. The
dependence of fold identification ability upon the category of
targets is understandable because for “Medium/Hard” targets, the
decoy structures are much more divergent, and there is more

opportunity to pick up wrong structures. This result also highlights
the necessity of further improving the current clustering strategy to
identify the best folds for divergently distributed decoys.

Rank of Identified Model among Entire Decoy Sets

In Figure 4, we sort the decoy conformations according to their
RMSD to the native structure and obtain the average rank of cluster
models among all the decoys. On average, the best of top five clusters
is in the top 1.4% of all decoy structures and the RMSD of the first
cluster is in the top 14.9%. For SCAR clusters, the average rank of
best of the top five clusters and that of the first cluster are in the top
5.8 and 32.7%, respectively. If we select the individual decoy struc-
ture of lowest energy, the average rank is in the top 43.1% of all
decoys. In Figure 5, we also show the histogram of first clustered
models and the lowest energy structure along with the percentile of
structure decoys sorted by their RMSD to native. The RMSD of the
lowest energy structures distributes almost evenly among all quality
structures, while the SPICKER cluster models are obviously more
populated for higher quality decoys; this demonstrates the significant
advantage of structure identification by clustering.

Indicator of Model Quality

A sensitive and objective indicator of the quality of predicted
models is of vital importance for successful blind protein structure

Figure 4. RMSD from native vs. the percentile rank of decoys. The
arrows mark the corresponding position of the models identified by
different methods.

Figure 5. Histogram of the RMSD to native of selected models by different methods with respect to their percentile rank.
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prediction. Because the distributions of decoy conformations in the
Monte Carlo simulation are closely related with the alignment
coverage of templates and the consistency between restraints and
the inherent energy terms of the basic force field,10 structure
convergence can be considered as an indicator of fold quality.
Here, we define a normalized structure cluster density as:

D �
M

�RMSD�Mtot
(2)

where M is the multiplicity of conformations in the cluster, Mtot is
the total number of decoy conformations submitted to SPICKER
for clustering, and �RMSD� denotes the average RMSD of the
conformations to the combined model of the cluster.

In Figure 6, we show the RMSD from native to the first
combined model vs. the normalized structure density. There is a
strong correlation between the cluster quality and the degree of
cluster convergence. Most dense clusters have a RMSD from
native below 4 Å when D � 0.2; this corresponds to a cluster
having more than 60% of its structures enclosed in a conforma-
tional space with a 3 Å of pairwise RMSD. On the other hand,
when D � 0.02, a value that corresponds to a cluster enclosing
less than 15% of structures within 7.5 Å, there is never a model
with a RMSD from native that is less than 6 Å.

In Figure 7, we also show the distribution of the highest cluster
density of each target. The gray area denotes the targets that have
an RMSD to native above 6 Å for the best of the top five clusters,
while the dark area shows those with a RMSD below 6 Å. If we
define a successful fold prediction when one of top five structures
has an RMSD to native below 6 Å, and where we assess the
likelihood of folding success based on the cluster density cutoff at
Dcut � 0.1, the false positive and false negative rate is 10 and 12%
according to Figure 7. This cutoff value is equivalent to the case

Figure 6. RMSD to native of the first cluster for 1489 targets vs. the
normalized cluster density that is defined in eq. (2).

Figure 7. Histogram distribution of structure density of the first cluster for 1489 benchmark targets. The targets of best RMSD in top five clusters
below and above 6 Å are shown in different color.
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where more than half of structures are enclosed within 5 Å of the
highest density area.

Cluster Population in Parallel Exchange Monte Carlo
Simulations

One of the main differences between SCAR and SPICKER is at
their methods of dealing with structure decoys in parallel Monte
Carlo sampling simulations.4–6 Let’s take the replica exchange
Monte Carlo simulation5 as an illustrative example.

Suppose we have N copies of the simulated molecule, each at
a different temperature Ti. A state of the composite system is
specified by X � { x1, x2, . . . , xN}, where xi is the conformation
of the molecule in the ith replica. The goal of the replica transition
(i.e., pi7j � exp(�i � �j)(E( xi) � E( xj))) in the simulation is
to have an equilibrium distribution of X:

P	X
 � �
i�1

N
e��iE	 xi


Z	Ti


where �i � 1/kBTi, and Z(Ti) � ¥ e��iE( xj)�( xi)dxi is the
overall partition function of the molecule at temperature Ti, with
�( xi) the conformational density of xi.

The population of structures in one SPICKER cluster n is
proportional to the summation of the probability for the molecule
to adopt the conformation x0 in all replicas, i.e.,

n � �
i

� P	X
�	 xi � x0
�	 x1
dx1�	 x2
dx2· · ·�	 xN
dxN

� �
i

� e��iE	 xi
�	 x1
dx1

Z	T1


� e��2E	 x2
�	 x2
dx2

Z	T2


· · ·

� e��iE	 xi
�	 xi � x0
�	 xi
dxi

Z	Ti

· · ·

� e��NE	 xN
�	 xN
dxN

Z	TN


� �
i

e��iE	 x0
�	 x0


Z	Ti


� �
i

z	Ti, x0


Z	Ti


where z(Ti, x0) is the partition function of the ith replica with
conformation x0 at the temperature Ti, which is related to its
conformational free energy by F(Ti, x0) � �kBT ln z(Ti, x0).

The difference between SCAR and SPICKER is that, for each
cluster in an individual replica, only the centroid structure of the
cluster was used in the final clustering in SCAR. This is equivalent to
treating the partition function z(Ti, x0) as being a constant independent
of Ti (i.e., all clusters are equally populated). Therefore, the relative
cluster population is not appropriately accounted for in SCAR.3

Conclusions

We have developed SPICKER, a simple and efficient approach to
identify near-native folds by clustering structure decoys. This algo-
rithm is used in a large-scale fold selection experiment on a repre-
sentative benchmark set comprised of 1489 benchmark targets, each
including up to 280,000 structure decoys generated by the threading
assembly refinement program TASSER.11 The combined models of
the highest structure density are significantly closer to the native
structures than the lowest energy structure. On average, the RMSD to
native of the highest density cluster is in the top 14.9% of all decoy
structures, while the lowest energy state is in top 43.1% of decoys,
and is almost evenly distributed among all quality conformations. For
the divergently distributed decoys found for the “Medium/Hard”
target proteins, the relative rank of the cluster identified model is
worse than that for the convergent decoys in the “Easy” target set; this
demonstrates that the fold identification of nonclustered decoys still
remains a challenge to current clustering approaches.

The overall result shows improvement over our previous two-step
clustering algorithm SCAR.3 For the same set of decoy structures,
SPICKER identifies around 10% more models with a RMSD � 6.5
Å to native than SCAR. The reason may be that information of the
cluster populations in the first step is neglected in the second step of
clustering in SCAR. Because a uniform shrinking of the Monte Carlo
generated trajectories does not change the relative cluster density, we
perform SPICKER clustering in a one-step process. Another differ-
ence that may contribute to the improvement is that the clusters in
SPICKER are ranked according to cluster density, while the clusters
in SCAR are ranked by energy, which has been shown to be less
sensitive to the model quality.

The strong correlation between cluster density and the RMSD
to native shows that this quantity can be considered as a reliable
indicator of the likelihood of folding success. For the 1489 repre-
sentative targets, if the highest cluster density is greater than 0.1
(equivalent to a folded state including more than half of confor-
mations clustered within 5 Å of each other), one of the top five
clusters has an RMSD to native below 6 Å in around 90% of the
cases. These results provide a quantitative reference for the assess-
ment of future blind genome scale protein structure predictions.
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