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ABSTRACT We have developed a new combined approach for ab initio protein structure prediction. The protein conformation
is described as a lattice chain connecting Ca atoms, with attached Cb atoms and side-chain centers of mass. The model force
field includes various short-range and long-range knowledge-based potentials derived from a statistical analysis of the
regularities of protein structures. The combination of these energy terms is optimized through the maximization of correlation for
30 3 60,000 decoys between the root mean square deviation (RMSD) to native and energies, as well as the energy gap
between native and the decoy ensemble. To accelerate the conformational search, a newly developed parallel hyperbolic
sampling algorithm with a composite movement set is used in the Monte Carlo simulation processes. We exploit this strategy to
successfully fold 41/100 small proteins (36 ; 120 residues) with predicted structures having a RMSD from native below 6.5 Å in
the top five cluster centroids. To fold larger-size proteins as well as to improve the folding yield of small proteins, we incorporate
into the basic force field side-chain contact predictions from our threading program PROSPECTOR where homologous proteins
were excluded from the data base. With these threading-based restraints, the program can fold 83/125 test proteins (36 ; 174
residues) with structures having a RMSD to native below 6.5 Å in the top five cluster centroids. This shows the significant
improvement of folding by using predicted tertiary restraints, especially when the accuracy of side-chain contact prediction is
[20%. For native fold selection, we introduce quantities dependent on the cluster density and the combination of energy and
free energy, which show a higher discriminative power to select the native structure than the previously used cluster energy or
cluster size, and which can be used in native structure identification in blind simulations. These procedures are readily
automated and are being implemented on a genomic scale.

INTRODUCTION

As second half of the genetic code, the prediction of tertiary

structure of proteins from their primary amino acid sequence

is one of the most important and challenging problems in

contemporary structural biology. There are three classes of

theoretical approaches to the problem in the recent literature

(Murzin, 2001): homology modeling (Guex and Peitsch,

1997; Sanchez and Sali, 1997); threading (Bowie et al.,

1991; Panchenko et al., 2000; Skolnick and Kihara, 2001);

and ab initio folding (Pillardy et al., 2001; Simons et al.,

2001; Kolinski and Skolnick, 1998). Although homology

modeling aims to find a template protein whose sequence is

clearly evolutionarily related to the query sequence, the aim

of threading is to detect both evolutionary-related sequences

and analogous folds, which adopt very similar structures to

the query protein. Both threading and homology modeling,

in principle, are capable of producing high-resolution folds

based on the identified template proteins, but they suffer

from the fundamental limitation that the native topology for

the sequence of interest must have already been solved; and

new folds cannot be predicted by these approaches. To

address this issue, the most difficult and general approach is

ab initio folding, where one attempts to fold a protein from

a random conformation.

In principle, ab initio approaches are based on the ther-

modynamic hypothesis formulated by Anfinsen (Anfinsen,

1973), according to which the native structure corresponds to

the global free energy minimum under the given set

of conditions. The success of the approach therefore relies

on the effectiveness of the following factors: 1), An implicit

representation of the protein with sufficient structural fidelity

and computational tractability. 2), A force field having near-

native structures as its global minimum. 3), A protocol to

effectively search the important regions of conformational

phase space in a reasonable amount of CPU time. 4), A

methodology to correctly identify near-native structure from

the decoys produced by the simulation.

In this article, we will present our efforts to address all of

these four issues that extend and improve our previous

TOUCHSTONE approach (Kihara et al., 2001). Here, we

exploit a new lattice representation for the protein structure,

in which three united atom groups of Ca, Cb, and the side-

group (SG) center of mass of the remaining (non-Cb) heavy

atoms (CABS) are specified. Compared with our previous

side-chain-only (SICHO) model (Kolinski and Skolnick,

1998) where only the side-chain centers of mass are treated,

the CABS model has higher geometric fidelity.

Similar to the SICHO model (Kolinski and Skolnick,

1998), the basic force field includes energy terms describ-

ing short-range structural correlations, hydrogen-bond inter-

actions, long-range pairwise potentials, one-body burial

interactions, and a residue-contact-based environmental

profile. All interactions are reconstructed in a more specific
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way in the new lattice model. For example, the H-bond and

proteinlike conformational stiffness are more precisely

constructed because of the inclusion of explicit Ca atoms

in the model. The combination of Ca-Ca and SG-SG cor-

relations provides for short-range interactions of higher

amino acid specificity than the SICHO model. We also

incorporate electrostatic interactions for the charged residues

and a global propensity to the predicted contact order and

contact number. Because these energy terms are not in-

dependent, some interactions are overcounted. To combine

all of these energies, we create 60,000 decoys for each of 30

training proteins of diverse lengths (47 ; 146 residues) and

topologies. We obtain their weight factors by maximizing the

correlation between the total energy and the structural

similarity of decoys to the native structure, and by max-

imizing the energy gap between native structure and decoy

ensembles. Decoy-based optimization of force fields has

been exploited in previous studies that either maximize the

correlation of the energy (scoring) function and RMSD to

native (Simons et al., 1999) or require a lower energy of the

native structure than the ensemble of decoys (Vendruscolo

et al., 1999; Tobi and Elber, 2000). Here, we find that their

combination provides for a better folding yield than when

using either one alone. The optimized force field has

a significantly improved energy versus RMSD correlation

in favor of the native structure, compared to the naı̈ve

uniformly weighted combination of all the energy terms.

To effectively search the resultant energy landscape, we

exploit the recently developed parallel hyperbolic sampling

algorithm in ourMonte Carlo (MC) simulations (Zhang et al.,

2002). Previously, this protocol was shown to be more

effective than general replica sampling in searching for low-

energy structures, especially for proteins of large size where

the energy landscape is significantly more rugged than the

energy landscape of small proteins. To identify near-native

structures from decoys generated in the MC simulations, we

exploit the structure-clustering algorithm (SCAR) (Betan-

court and Skolnick, 2001) to cluster the low-energy

trajectories. We introduce two quantities dependent on the

cluster density and the combination Y of energy and free

energy, which are more discriminative than the generally

used average energy and cluster size for the identification of

near-native structures.

We apply our approach to a test set of 125 proteins (65

proteins that are the same as used in the original

TOUCHSTONE paper (Kihara et al., 2001) plus an

additional, harder 60-protein test set that covers a larger

range of protein sizes). Using only protein sequence

information, we can fold 41 cases that have structures with

root mean square deviation (RMSD) from native of 1.79 ;

6.5 Å in the top five clusters. All these foldable cases are

restricted to small proteins (36 ; 120 residues). To fold

proteins of larger size and to improve the folding yield of

the small proteins as well, we take the threading-based

predictions of side-chain contacts as loose restraints in our

force field to guide the folding simulations. These restraints

are collected from consensus contacts hit by PROSPECTOR

(Skolnick and Kihara, 2001). Their inclusion results in

a significant improvement in the overall folding perfor-

mance. There are 83 cases (70 cases with length less than 120

residues plus 13 cases with 120 ; 174 residues) in the

restraint-guided simulations that have at least one structure

with a RMSD to native below 6.5 Å in the top five clusters.

Especially, for the 60 harder representative proteins, the

fraction of foldable cases (defined as having one of the top

five clusters with RMSD from native below 6.5 Å) by the

SICHO and CABS models are 1/3 and 1/2, respectively (i.e.,

20/60 and 32/60), indicating a qualitative improvement of

the new CABS model over the SICHO model. This im-

provement may, however, be partly due to the force-field

optimization procedure used for the CABS model.

This article is organized as follows: we first describe the

lattice representation of protein structure. Second, we give

a detailed discussion of the interaction scheme and the

procedure used to optimize the force field. This is followed

by a description of the conformational search engine and the

secondary structure prediction scheme. Then, we present the

results of our approach applied to representative proteins,

and our method for the evaluation of the simulation results.

Finally, we summarize the key results.

METHODS

Reduced protein representation

Each amino acid is represented by up to three united atom groups (Fig. 1). In

the main chain, only the alpha carbon (Ca) atoms are treated explicitly, and

the Ca trace is restricted to a three-dimensional underlying cubic lattice

system with a lattice spacing of 0.87 Å. To keep sufficient facility for the

conformational movements and geometric fidelity of structure representa-

tion, we allow the model’s backbone length to fluctuate from 3.26 Å to 4.35

Å. As a result, we have 312 basis vectors representing the virtual Ca-Ca

bonds (see Table 1). The average vector length is ;3.8 Å, which coincides

with the value of real proteins. To reduce the configurational entropy, we

also restrict the virtual Ca-Ca bond angle to the experimental range

[658,1658].

The positions of three consecutive Cas define the local coordinate system

used for the determination of the remaining two interaction units: the

b-carbon (Cb) (except glycine), and the center of mass of remaining side-

group heavy atoms (except glycine and alanine). A two-rotamer approxi-

mation has been assumed, depending on whether the configuration of the

main chain is expanded (for instance in a b-sheet) or compact (for instance in

an a-helix). The secondary structure-dependent numerical parameters for the

determination of the Cb and SG positions are extracted from the protein data

bank (PDB) (Berman et al., 2000).

The excluded volume of the envelope of the Ca and Cb atoms are

represented as identical size hard spheres (infinite energy of overlap) of

diameter 3.25 Å plus a 1/r type of soft-core potential in the range [3.25 Å,

5.0 Å]. This mimics the minimal observed cutoff distance of 4.0 Å in real

proteins, and allows a few atoms to approach closer than the reality at

a penalty, thereby partly remedying the coarseness of the discrete lattice

model. The excluded volume of the SG units is approximated by a strong

energy penalty when the distance of a side group from other units is below

cutoff values specific to the interacting pair of amino acids. With the above

geometric restrictions, all PDB structures can be represented with an average
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RMSD of 0.4 Å from native, better than that of 0.8 Å via the SICHO model

(Kolinski and Skolnick, 1998). This geometric fidelity does not show any

systematic dependence on protein length.

Energy terms in the force field

The force field consists of a variety of terms based on or derived from the

regularities seen in PDB structures. They contain a generic bias to

proteinlike conformational stiffness, amino acid-dependent interactions,

and protein-specific restraints predicted from evolutionary information.

According to the distance along the sequence between the involved amino

acid pairs, these interactions can roughly be classified into two categories:

long-range tertiary interactions and short-range secondary structural

correlations, based on which our following descriptions are separated.

The different energy terms achieve various effects on the generation of

nativelike states. The most important factors for overall folding in our force

field are the secondary structure prediction propensities, hydrogen bonding,

and tertiary contact restraints derived from threading. The first two terms

provide a basic folding framework; the contact restraints are of critical

importance in modifying the energy landscape to guide the simulations to

near native states, especially for large proteins where the general proteinlike

potential cannot distinguish the native state among a huge number of

possible topologies.

The other terms describing short-range correlations, environment

profiles, burial, and long-range pairwise interactions are helpful for refining

the packing of side chains and local fragments; the bias toward predicted

contact order and contact number also helps somewhat to speed up the

folding processes.

Some of the above energy terms are similar to that in the SICHO model

(Kolinski and Skolnick, 1998); however, the implementation is different in

the new lattice model. For the sake of completeness, we present all the

energy terms used in the CABS model. Below, we first describe the short-

range interactions and then the long-range terms. Next, we will determine

the relative weights of the energy terms in the combined force field, based on

the correlation between the energy and structure quality of the decoys.

Short-range interactions

Multiple short-range correlations. The potential contains both Ca-Ca

and SG-SG local structure correlations derived from the PDB as the negative

logarithm of the relative frequency histogram:

Eshort ¼+
i

½w1E13ðAi;Ai12; ri;i12Þ1w2E14ðAi11;Ai12; ri;i13; eiÞ

1w3E15ðAi11;Ai13; ri;i14Þ1w4E912ðAi;Ai11; si;i11Þ
1w5E913ðAi;Ai12; si;i12Þ1w6E914ðAi;Ai13; si;i13Þ
1w7E915ðAi;Ai14; si;i14Þ�: (1)

Here, Ai denotes the amino acid identity of the ith residue; ri,j (si,j) is the
Ca (SG) distance between the ith residue and the jth residue; ei denotes the
local chain chirality of three consecutive Ca-Ca vectors from i to i 1 3. Ei,j

represents the Ca-Ca correlation of the ith and jth residues extracted from

a statistical analysis of a structural data base of nonhomologous proteins

(Kolinski and Skolnick, 1994, 1998). E13 includes only two bins depending

on the distance of ri,i12, which correspond to local extended and compact

structures, respectively. E14 and E15 include more bins because more distant

interactions are involved. When the predicted secondary structure is

assigned in the fragments, both E14 and E15 are half/half combinations of

the general and secondary structure specific parts extracted from generic and

secondary structure specific fragments of the PDB, respectively.

E9ij in Eq. 1 represents the local side-group correlation from the ith residue

to jth residue and is derived from a set of PDB structures that have certain

levels of sequence similarity to the query proteins and where homologous

proteins of more than 25% sequence identity to the query proteins are

excluded from the structural data base (Kolinski et al., 1998).When predicted

secondary structure is assigned,E9ij is also combinedwith a SG-SGcorrelation

potential derived from secondary structure specific fragments of PDB data

base. The wi values in Eq. 1 and the equations below are the relative scale

factors of these interactions that will be determined in the next section.

TABLE 1 The lattice vectors employed in the representation

of the main chain Ca trace

Vector type*

Number of

vectors

Squared length

in lattices Length [Å]y

[63,62,61] 48 14 3.26

[64,0,0] 6 16 3.48

[63,62,62] 24 17 3.59

[64,61,0] 24 17 3.59

[63,63,0] 12 18 3.69

[64,61,61] 24 18 3.69

[63,63,61] 24 19 3.79

[64,62,0] 24 20 3.89

[64,62,61] 48 21 3.99

[63,63,62] 24 22 4.08

[64,62,62] 24 24 4.26

[64,63,0] 24 25 4.35

[65,0,0] 6 25 4.35

hri ¼ 3.81 Å

*Includes all permutations of the coordinates and signs.
yOne lattice unit corresponds to 0.87 Å.

FIGURE 1 Schematic representation of a three-residue fragment of poly-

peptide chain in the CABS model. The Ca trace is confined to the underlying

cubic lattice system, whereas the Cb atom and side-group rotamers are off-

latticed and specified by the positions of three adjacent Ca atoms.
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Local conformational stiffness. This potential describes the character-

istic local stiffness of global proteins and the general tendency toward

regular arrangements of (predicted and nonpredicted) secondary structure:

Estiffness ¼ w8 +
i

½�lli � li14 � ljui � ui12j

� lQ1ðiÞ1Q2ðiÞ1Q3ðiÞ�: (2)

Here, the unit tangent vector li ¼ ri;i11=jri;i11j, and bisector vector

ui ¼ li�1 � li=jli�1 � lij, where ri,i11 is the Ca-Ca bond vector from vertex i

to vertex i 1 1. The first two terms represent the general propensities to

common bond-vector orientations of a-helical and b-sheet structures as

shown in Fig. 2. The third term is designed to impose further structure biases

to the individual regularities of a-helical and b-sheet structures and is

written as

Q1ðiÞ

¼

1; if li � li12\0 and li � li13[0

and ri;i14\7:5 Å ðmimics helix stuctureÞ;
1; if vi � vi11\0 and vi � vi12[0

and ri;i14[11:0 Å ðmimicsb-sheet structureÞ;
0; otherwise;

(3)

8>>>><
>>>>:

where the unit normal vector vi ¼ ui3 li=jui3 lij (see Fig. 2). It should be

noted that in Eq. 3, a helical bias is not applied to the residues predicted to

be in an extended secondary structure, and vice versa. l is a stiffness

modulation factor for the first three terms, equal to 1 or 0.5, depending on

whether the involved residues are inside or outside the radius of gyration of

the protein respectively.

Q2 denotes the strong tendency to form predicted secondary structures,

which are taken from the combined PSIPRED (Jones, 1999) and SAM-T99

(Karplus et al., 1998) secondary structure prediction algorithms (discussed

in ‘‘Secondary structure prediction’’).

Q2ðiÞ ¼
jri;i17 � 10:5j; if helix is predicted;
jri;i16 � 19:1j; if b-sheet is predicted:

�
(4)

Q3 imposes a penalty to the irregular crumpled structures, i.e.

Q3ðiÞ ¼

1; if jri;i14 � ri14;i18j\0; and

jri14;i18 � ri18;i112j\0;
and jri;i14 � ri18;i112j[0;

0; otherwise;

8>><
>>: (5)

where ri,j is the vector from the ith Ca vertex to the jth Ca vertex.

Hydrogen bonds. Hydrogen bond interactions can be short range or

long range depending on the secondary structures of the involved residues,

although we list it here in the short-range category of interactions. Only main

chain hydrogen bonds are considered. Due to the lack of the explicit

positions for the peptide bond atoms, the effect of hydrogen bonds is

translated into Ca packing preferences:

EHB ¼ �w9 +
j[i

l9ðui � ujÞjvi � vjjQ4ði; jÞ: (6)

Here ui � uj and jvi � vjj impose a bias to the specific vertex orientation of

regular H-bonds. Q4ði; jÞ defines the conditions when the ith residue is

hydrogen bonded to the jth residue, i.e.,

Q4 ¼
1; if ri;j\5:8 Å; ui � uj[0; jvi � vjj[0:43;

jri;j � vij=ri;j[0:9; jri;j � vjj=ri;j[0:9;
0; otherwise:

8<
:

(7)

Secondary structure assignments (when predicted) modify the formation

of H-bonds: H-bonds between extended-assigned and helical-assigned

residues and long-range H-bonds between helical-assigned residues are

prohibited. Moreover, to enhance the H-bond in the better assigned

secondary structure regions, we set the stiffness modulation factor l9 to 1.5

or 1, respectively, depending on whether or not regular helix and sheet

structures are predicted.

Local distant restraints. The consensus local distance predictions for

pairs of Cas less than six residues along the sequence are collected from the

templates and short fragments hit by our threading program PROSPECTOR

(Skolnick and Kihara, 2001). These protein-specific predictions are

incorporated in the force field as loose restraints on the local structure:

Edistmap ¼ wr1 +
j[i

Q5ðjri;j � di;jj � di;jÞ

1wr2Q6 +
j[i

jri;j � di;jj=di;j � Ndp

 !
; (8)

where di,j is the predicted distance of the ith residue and jth residue, and di,j is

the mean square deviation of the prediction. The step functions Q5ðxÞ and
Q6ðxÞ are defined as

Q5ðxÞ ¼
1; if x $ 0;
0; if x\0;

�

Q6ðxÞ ¼
x; if x $ 0;
0; if x\0:

�
8>><
>>: (9)

The accumulated normalized deviations to the predicted distant map enter

into the force field as a penalty when they exceed the number of predictions,

Ndp. This penalty term allows for the significant violation of a small fraction

of unreasonable predictions.

Long-range interactions

Pairwise interactions. The long-range pairwise interactions of Ca(b)-

Ca(b) and that of SG-Ca(b) are essentially the general excluded volume

interactions, which as mentioned above are represented by a smaller hard-

sphere potential plus a 1/r type of soft-core potential with a slightly larger

range. The SG-SG interaction is written as

FIGURE 2 Schematic illustration of the virtual Ca-Ca vectors for regular

helical and sheet structures. li ¼ ri;i11=jri;i11j, ui ¼ li�1 � li=jli�1 � lij,
vi ¼ ui 3 li=jui 3 lij, where ri,i11 is the Ca-Ca bond vector from vertex i

to vertex i 1 1. As demonstrated in the first two terms of Eq. 2, for both

helical and sheet structures, li and li14 are oriented in parallel whereas ui and
ui12 are either antiparallel (helix) or parallel (sheet).
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Epair ¼ w10 +
j[i

Ei;jðsi;jÞ; (10)

where

Ei;jðsi;jÞ ¼

4; if si;j\RminðAi;Aj; gi;jÞ
eðAi;Aj; gi;jÞ � Ci;j; if RminðAi;Aj; gi;jÞ
\si;j\RmaxðAi;Aj; gi;jÞ
0; otherwise:

8>><
>>: (11)

Here, gi,j denotes the relative orientations of the bisector vectors of the

backbone vertices, i.e., parallel (ui � uj [ 0:5), antiparallel (ui � uj \� 0:5),

and perpendicular (�0:5\ ui � uj \ 0:5). RminðAi;Aj;gi;jÞ and

RmaxðAi;Aj;gi;jÞ are the cutoff values for the hard-core excluded volume

interactions and the soft-core square-well interactions, respectively. The

pairwise potential eðAi;Aj; gi;jÞ is derived from a structural data base

(Skolnick et al., 1997). Ci;j ¼ min½0;E15ðAi�2;Ai12; ri�2;i12Þ� �min½0;E15

ðAj�2;Aj12; rj�2;j12Þ� aims to enhance the contact interactions of the short

fragments that have favorable short-range correlations and therefore stabilize

their local structures.

Burial interactions. This potential represents the general propensity of

amino acids to be buried or exposed to solvent and is only applicable to

single-domain proteins. It includes contributions from both the Cas and the

SGs:

Eburial ¼ w11 +
i

ECa Ai;
ri
r0

� �
1miESGðAiÞ

� �
: (12)

Here ri is the radial distance of the ith Ca related to the protein center, r0 is
the average radius of gyration, which has an approximate relationship with

the length of protein N, i.e., r0 � 2:2N0:38. ECaðAi; ri=r0Þ is a statistical

potential derived from PDB data base, where ri was divided into five bins for

each amino acid Ai. ESGðAiÞ is a half/half combination of the two most

commonly used hydrophilicity scales of Kyte-Doolittle (Kyte and Doolittle,

1982) and Hopp-Woods (Hopp and Woods, 1981). mi is the burial factor

relative to hydrophobic core defined as

mi ¼
x2i
x
2

0

1
y2i
y
2

0

1
z2i
z
2

0

� 3; (13)

where (xi, yi, zi) and (x0, y0, z0) are the coordinates of the SG in the center of

mass coordinate system and the lengths of principal axes of the protein

ellipsoid, respectively.

Electrostatic interactions. We consider electrostatic interactions

among four charged residues, i.e., Asp (�), Glu (�), Lys (1), and Arg

(1), in a Debye-Huckel form:

Eelectro ¼ w12 +
j[i

expð�ksi;jÞ
si;j

: (14)

Here, k is the inverse Debye length that is sensitive to solvent conditions

(Zhang et al., 2001). Through examination of the potential on structure

decoys, we found that a value of 1/k ; 15 Å produces the best correlation

between the RMSD and energy.

Environment profile. The potential describing the contact environment

of individual residues is written as

Eprofile ¼ w13 +
i

VðNp

i ;N
a

i ;N
v

i ;AiÞ; (15)

Np
i is the number of residues that are in contact with the ith residue, whose

vertex vectors (uj’s) are parallel to ui , i.e., ui � uj [ 0:5; Na
i and Nv

i are

defined in a similar way but with ui � uj \� 0:5 (antiparallel) and

�0:5\ ui � uj \ 0:5 (perpendicular), respectively. Residues are regarded

as being in contact when the distance between their side groups is below

RminðAi;Aj; gi;jÞ. (For a list of all parameters see http://bioinformatics.buffa-

lo.edu/abinitio.) Again, the amino acid-specific potential VðNp
i ;N

a
i ;N

v
i ;AiÞ

is derived from the protein structure data base as the negative logarithm of

the relative frequency histogram.

Contact order and contact number. We also include biases to the

expected contact order and contact number:

ECOCN ¼ w14ðNCO � N
0

COÞ1w15ðNCN � N
0

CNÞ: (16)

Here, NCO is the contact order of the given structure, defined as average

sequence separation of residues in contact (Baker, 2000). The expected

contact order has an approximately linear dependence on protein length N,

i.e., C0
CO ¼ aN, where a is a protein secondary structure specific parameter

that is derived from the PDB data base, which was divided into three

categories of helix, sheet, and helix/sheet proteins. NCN is the number of

contacting residues, and N0
CN ¼ 1:9N is an approximate estimate of the

contact number according to the PDB.

Contact restraints. Consensus tertiary contact predictions are collected

from templates hit by the threading program PROSPECTOR (Skolnick and

Kihara, 2001), where sequence homologs have been excluded from the data

base. These predictions are incorporated into the force field as

Econtact ¼ wr3 +
j[i

9Q5ðsi;j � 6 ÅÞ

1wr4Q6 +
j[i

9Q6ðsi;j � 6 ÅÞ � Ncp

 !
; (17)

where step functionsQ5;6ðxÞ are defined as in Eq. 9. The summation of+9

j[i

is done only for Ncp residue pairs that are predicted in PROSPECTOR as

having side-chain center of mass contacts. A penalty is invoked when the

distance of a side-group pair predicted as being in contact is beyond 6 Å. An

additional penalty enters when the total violation against the prediction is

beyond a threshold value of Ncp. Because only a portion of the predictions is

exactly correct and some predicted contacts may even be in geometric

contradiction to each other, this threshold cutoff is designed to tolerate some

significant violations of a small portion of the contact restraints.

Optimization of force field

Our total force field is a combination of all above energy terms, i.e.:

E ¼ Eshort 1Estiffness 1EHB 1Epair 1Eburial 1Eelectro 1Eprofile

1ECOCN 1Edistmap 1Econtact: (18)

There are 19 parameters in Eq. 18, which dictate the relative weights of

the different energy terms. We could not combine them naı̈vely, i.e., let all

wi ¼ 1, because the energy terms are not independent and some interactions

are multiply counted. For example, the short-range five-residue correlation

energy E15 partly includes the contributions of lower-order correlation

energies E1i (i \ 5); the former is also incorporated in the calculations of

pairwise interactions. The propensity to regular secondary structure is

implemented in different energy terms such as hydrogen bonding,

conformational stiffness, and pairwise interactions. Thus in the following,

we will first generate a set of nonredundant decoys, and then determine the

parameters by maximizing the correlation between the energy and the

structural similarity of the decoys to native.

Generation of decoy structures

To generate decoys, we selected 30 nonhomologous protein sequences from

the PDB (Berman et al., 2000), which cover a variety of lengths (47 ; 146)

and topologies (see proteins marked with q in Table 6). We make Monte

Carlo runs based on both the SICHO (Kolinski et al., 1998) and CABS force

fields using the parallel hyperbolic sampling algorithm (Zhang et al., 2002).
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To perform the CABS runs, we made a temporary initial estimate of the

force field parameters. These simulations start from the native structure. For

reasonable force fields, the low temperature replicas stay around the near-

native state and the higher temperature replicas move away and generate

structures further away from native. If the model force field is not good

enough and even low temperature replicas go far away from native, we

intermittently stop and restart the simulation from native structures to ensure

that a sufficient number of decoys are near native.

The decoys are collected from the structure trajectories in all high- and

low-temperature replicas. To avoid the overaccumulation of some struc-

ture clusters, we introduce a cutoff on the RMSD of structure pairs and

ensure that the RMSD of any pair of decoy structures are larger than 3.5

Å. The decoys produced in this way retain their secondary structure and

side-chain packing pattern in the low- and middle-temperature replicas. To

neglect bad random coil structures present in the high temperature

replicas, we remove structures whose radii of gyration are larger than

3N1/3. The simulation continues until 60,000 decoys are generated for

each protein.

Because the force fields are different in the SICHO and CABS models,

these two simulations cover different regions of configurational phase space;

this is helpful for the divergence of the decoy sets. As shown in Fig. 3 a, the

rank of native structure in the decoys produced by the SICHO model is poor

if the decoys are evaluated by the SICHO force field; however, if the same

decoys are evaluated by the CABS force field, the rank of native structure is

much better (Fig. 3 b). Similarly, if the decoys produced by the CABS model

simulation are evaluated by CABS force field itself, the rank of native

structure is poor (Fig. 3 d ); however, if these same decoys are evaluated by

the SICHO force field, the rank of native structure is much better (Fig. 3 c).

This is a general feature seen in all the decoy sets on the 30 selected proteins;

this means that, when the force field used for structure evaluation is different

from the force field used for structure generation, it is possible that we can

get better identification of native structure than if both force fields are the

same. This is understandable because the Monte Carlo simulations always

detect the so-called ‘‘important phase space’’ regions that are of low energy.

Because of imperfections of the force field, this lowest energy basin usually

does not correspond to the native state in most cases (see Fig. 3 e), so the

rank of native structure in those decoys produced by the force field itself is

poor. Because of the differences in the two force fields, the states in the

lowest energy basin of the first force field can be of high energy in the second

force field. But the idea is that native structure should be of relatively low

energy in a reasonable force field. Therefore, the rank of native structure can

be relatively better when ranked by the second force field (Fig. 3 e).

Parameter optimization

The aim of our parameter optimization procedure is: i), to maximize the

correlation between the energy function of the decoys and the RMSD to the

native structure; and ii), to maximize the energy gap between the native state

and the ensemble of unfolded states. For the 30 3 60,000 decoy structures,

we try to find a set of parameters to minimize the following equation:

G ¼ G1G2G3; (19a)

where

G2 ¼ +
30

k¼1

Rðk; jÞ � h+
NP

i¼1

wiEiðk; jÞ1 bk

� �2

Rðk; jÞ

* +
j

; (19c)

and

Here Rðk; jÞ is the RMSD of jth decoy structure of kth training protein.

We have a cutoff on the RMSD, i.e., Rðk; jÞ ¼ 4 if RMSD \ 4 Å, Rðk; jÞ ¼
10 if RMSD[10 Å, because we consider any decoy with a RMSD \ 4 Å

as good and a RMSD[ 10 Å as poor. Np is the number of undetermined

parameters (wi values) of force fields, Eiðk; jÞ is the energy term conjugate to

the parameter wi. h� � �ij ¼ ð1=60000Þ+60000

j¼1
� � � denotes the average over the

decoys.

The first termG1, of Eq. 19 b, aims to maximize the correlation coefficient

between the RMSD and the total energy. The second termG2 of Eq. 19 c acts

to minimize the x2 between a linear regression (Rk¼hE1 bk) and the energy

versus RMSD,where bk is the individual intercept for the kth training protein,
h is the slope of the fit line. Although bk and h are irrelevant for the

determination of the best force field,h decides the scale of the energy function

that is related to the temperature range using MC simulations. We will

determineh from the simulations.Although bothG1 andG2 try to enhance the

correlation of the energy function to the RMSD from native, the combination

of these two terms speeds up the convergence of the optimization procedure

and gives better results than when using either one of them alone. Finally, the

aim of the third term G3 is to maximize the relative gap between the native

structures and the ensemble of the decoys of all 30 training proteins.

Because the weight parameters wri in Eqs. 8 and 17 depend on the results

from threading, based on Eq. 19 a we at first optimize the 15 inherent

parameters of wi of the intrinsic force field with the threading-based restraint

parameters wri¼ 0. In the second step, we have the 15 wi values fixed at their

G3 ¼
1

11 1

30
+

30

k¼1

+
NP

i¼1
wiEiðk; jÞ

D E
j
�+

NP

i¼1
wiEiðk; nativeÞ

+
NP

i¼1
wiEiðk; jÞ

� �2
� 	

j

� +
NP

i¼1
wiEiðk; jÞ

D E
j

 !1=2:

(19d)

G1 ¼
1

11 1

30
+

30

k¼1

Rðk; jÞ+NP

i¼1
wiEiðk; jÞ

D E
j
� +

NP

i¼1
wiEiðk; jÞ

D E
j
hRðk; jÞij

+
NP

i¼1
wiEiðk; jÞ

� �2
� 	

j

� +
NP

i¼1
wiEiðk; jÞ

D E2

j

 !
Rðk; jÞ2

 �

j
�hRðk; jÞi2j

� � !1=2;

(19b)
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optimized values and we optimize the remaining four threading parameters

wri. To obtain the optimized values of 30 1 NP parameters in Eq. 19, we

develop a minimization approach based on the CERN MINUIT package

(James, 1998), which can handle and find the global minimum of

a generation function of up to 100 variable parameters. To avoid some

unphysical subminima and to speed up the optimization processes, we have

put a loose physical restriction on each parameter.

In Fig. 4 a, we show an example of the energy versus RMSD correlation

for 1fas_. If we simply add all the subenergy items with naı̈ve weight factor

wi ¼ 1, the global minimum of the force field is ;8.5 Å away from native

structure and the correlation coefficient of total energy and RMSD is 0.44

(Fig. 4 b). With the optimization of the weight factors, the global minimum

state is much closer to native and the energy versus RMSD correlation

coefficient equals to 0.69 (Fig. 4 c).
In Table 2, we show the average correlation coefficients and z-scores of

the different energy terms over 30 3 60,000 decoys. It is shown that the

combined energy with optimized weight factors has higher correlation

coefficients and nativelike recognition capability than the naı̈ve combination

of energy and each of the single energy terms alone.

Conformational search engine

Because of the extremely large configuration phase space of protein

molecules and the significant roughness of the energy landscape, it is of vital

importance to have a powerful search engine to scan the ‘‘important’’

regions of conformational phase space. The efficiency of a Monte Carlo-

based search engine depends on interplay of the energy update protocol and

the type of conformational movements used to modify a given conformation.

Because the energy barriers can be too high for the simulation to cross, it

is well known that the canonical Metropolis protocol usually results in the

simulations being trapped in local energy minima in rugged force fields

FIGURE 3 Energy versus RMSD of decoys to native

structure of protein 1cis_. (a) Decoys generated by Monte

Carlo simulations of the SICHO model, energies of decoys

are evaluated by the SICHO force field. (b) The same

decoys as in a but the energies are evaluated by the CABS

force field. (c) The decoys generated by Monte Carlo

simulations of the CABS model, energies of decoys are

evaluated by the SICHO force field. (d ) The same decoys

as in c but the energies are evaluated by the CABS force

field. (e) A schematic illustration of landscape of the

SICHO and CABS models. Due to differences in potential

energy functions, the important regions of phase space in

the two simulations do not match, and the lowest energy

state may be nonnative.
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(Newman and Barkema, 1999). In recent work (Zhang et al., 2002), we

developed a new parallel hyperbolic sampling (PHS) algorithm to alleviate

the problem of ‘‘ergodicity breaking.’’ The point of this algorithm is that the

local high-energy barriers are flattened by a nonlinear transformation, i.e.:

Ẽ ¼ arcshðE� E0Þ; E $ E0;
�‘; E\E0;

�
(20)

where E0 is the protein energy of the current structure and arcsh is the inverse

hyperbolic sine function. Thus, the locations of all local energy minima are

preserved, and the simulation is allowed to tunnel more efficiently through

energetically inaccessible regions to low-energy valleys. We implement the

simulations in a composite replica ensemble, with each replica at a different

temperature. By allowing global swaps between replicas (say i and j) with

a probability pi$j ¼ exp½ðbi � bjÞðEi � EjÞ�, the larger-scale conforma-

tional jumps for the low-temperature replicas can be achieved by the aid of

the higher-temperature replicas. We applied the PHS algorithm to the

SICHO model and found that it can fold proteins faster and identify lower

energy structures in the same CPU time, as compared to the general replica

sampling (RS) method (Zhang et al., 2002).

In this work, we will use the PHS algorithm as the energy update

protocol for the CABS model. The conformational update is first applied on

the Ca chain. Then positions of Cb and SG units are determined

accordingly. Five kinds of Ca-chain movements are used in our simulations.

Movement 1: Basic 2-bond and 3-bond movements (Fig. 5 a), in which

a 2- or 3-bond fragment is replaced by a fragment of the same length,

but with a new conformation. Because of the limited number of

conformations of 2- and 3-bond fragments on the lattice, all basic

moves can be prefabricated, i.e., they are calculated only once and

then randomly selected during the simulation. With the current

lattice, we have 67,272 2-bond fragments and 14,507,376 3-bond

fragments.

Movement 2: 4-, 5-, and 6-bond movements (Fig. 5 b), which consist of

consecutive 2- and 3-bond moves.

Movement 3: 6- to 12-bond translation (Fig. 5 c), in which a randomly

chosen fragment of 6–12 bonds is translated over a small distance.

FIGURE 4 The energy versus

RMSD for the decoy structures of

1fas_ produced by the CABS model.

(a) Correlations of 19 subenergy terms

with the RMSD to native. (b) Com-

bined energy with wi ¼ 1. (c) Com-

bined energy with optimized weight

parameters.

1152 Zhang et al.

Biophysical Journal 85(2) 1145–1164



Movement 4: Multibond sequence shift (Fig. 5 d ), which is performed

through a permutation of a randomly chosen 2-bond piece and

another randomly chosen 3-bond piece. Because the conformation of

the fragment between the permutation points is not modified, the net

result of this permutation is a sequence shift along the modeling

chain as marked by the arrows in Fig. 5 d. Although the acceptance

probability of this movement can be quite low, it can substantially

increase the probability of extrusion and resorption of tangled

structures and help the simulation get out of some local energy traps.

Movement 5: Extremity movements (Fig. 5 e), which reconstruct the

conformation of the N-or C-terminus through a random walk from

a chosen point to the extremity.

In each of the above randomly chosen movements, a geometric restriction

on the virtual Ca-Ca bond angles to lie in the range of [658, 1658] is put on all

new conformations. The smaller moves with higher acceptance rates are

performed with greater frequency, which lead to a better simulation of the

process of the fine repacking of side chains after a larger change of the main

chain local geometry.

Because only the energy difference between two conformations is

involved in Eq. 20, in each step of updates we only need to calculate the

energies of the fragments whose conformation changed to save CPU time.

Before any energy computation, the test for excluded volume violation of the

Ca and Cbs are always performed, and trial conformations that would lead to

steric collisions of chain units are rejected.

Table 3 shows the lowest energies identified by different algorithms using

different move sets for the same CPU time and demonstrates how the two

aspects of the energy update protocol and movements influence the

efficiency of Monte Carlo simulations. The 20 test cases cover protein

lengths from 36 to 174 residues. For the same algorithm, the simulations

with a more comprehensive move set always do better than these including

only basic 2- and 3-bond movements, because the larger moves can cross

over local energy barriers more efficiently. When using simple movements,

the PHS algorithm does significantly better than the RS algorithm, because

the local energy obstacles, which are difficult to surmount by simple

movements, are flattened in the PHS simulation. When using combined

move sets, there is no obvious difference in the performance of the PHS and

RS simulations for small proteins (say, \100 residues). However, for larger

proteins, the PHS simulations almost always identify lower energy structures

than the RS simulations do. This may mean that the roughness of energy

landscape is correlated with protein length. For small proteins, the local

energy barriers are not too high and can be surmounted when using a larger

set of movements. For large proteins, however, the local energy barriers are

still difficult to surmount with the combined movements. So the flattening of

energy landscape improves the sampling.

Secondary structure prediction

Our force field has imposed strong conformational biases to the predicted

secondary structures for both short- and long-range interactions. Thus,

highly accurate secondary structure prediction is extremely important for

successful tertiary structure prediction.

TABLE 2 Summary of the CABS force-field weights

Energy terms Correlation coefficient* z-scorey

E13: 3-Ca correlation 0.27 �0.36

E14: 4-Ca correlation 0.56 �0.78

E15: 5-Ca correlation 0.33 �0.42

E912: 2-SG correlation 0.23 �0.10

E913: 3-SG correlation 0.32 �0.31

E914: 4-SG correlation 0.47 �0.62

E915: 5-SG correlation 0.14 �0.48

Estiffness: local stiffness 0.25 �0.22

EHB: hydrogen bonds 0.51 �0.83

Epair: pairwise interaction 0.38 �0.51

Eburial: burial interaction 0.46 �0.47

Eelectro: electric interaction 0.27 �0.23

Eprofile: environment profile 0.34 �0.47

ECO: contact order 0.02 �0.07

ECN: contact number 0.31 �0.52

Edistmap1: distant map 0.43 �0.60

Edistmap2: accumulate distant map 0.47 �0.55

Econtact1: contact restraints 0.53 �0.74

Econtact2: accumulate contacts 0.50 �0.60

E ¼ +19

i¼1
Ei: naı̈ve combination 0.54 �0.64

E ¼ +19
i¼1

wiEi: optimized combination 0.65 �1.01

*The correlation coefficient of energy (E) and RMSD (R), i.e.,

Correlation coefficient ¼ ðhERi � hEihRiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhR2i � hRi2ÞðhE2i � hEi2Þ

p
,

where h� � �i denotes the average over the 60,000 decoy structures. The

values shown in the table are the average over 30 training proteins.
yThe z-score is defined as z-score ¼ ðhEi

R\4:5 Å � hEiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hE2i � hEi2

p
,

where h� � �iR\4:5 Å
denotes the average on the near-native structure of

RMSD \ 4.5 Å. The values shown in the table are the average over 30

training proteins.

FIGURE 5 Schematic diagrams of the movements employed in the Monte

Carlo simulations. The Ca-traces before and after movements are denoted by

the solid and dashed lines, respectively. (a) A basic prefabricated 3-bond

update of the fragment [i, i 1 3] in the simulations. (b) A 5-bond update of

the fragment [i, i 1 5] consists of two consecutive 3-bond movements. The

first 3-bond movement updates the interval of [i, i 1 3], and the second 3-

bond movement updates the piece of [i1 2, i1 5]. (c) An 8-bond translation

of the fragment in [i, i1 8] over a small distance l. (d ) A permutation of a 3-

bond piece of [i, i 1 3] and a 2-bond piece of [ j, j 1 2]. The thin arrows

denote the shift orientation of the amino acid sequence. (e) Examples of

random walks from i to the N-terminus or from j to the C-terminus.
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The prediction accuracy of secondary structures has been considerably

improved with the utilization of the multiple sequence alignments (Benner

and Gerloff, 1991). It was found that the secondary structure information can

be extracted from the sequence evolutionary information (Branden and

Tooze, 1999). In Table 4, we show the results of secondary structure

predictions on 125 test proteins based on the three most-often-used

sequence-based predictors: PHD (Rost and Sander, 1994), SAM-T99

(Karplus et al., 1998), and PSIPRED (Jones, 1999). The average prediction

accuracy of the single predictor for the 125 proteins fluctuates from 73.4% to

81.0%, depending on the cutoff of the confidence level for a-helix and

b-strand assignments. The accuracy of PSIPRED is slightly better than

SAM-99 in our test set, and the accuracy of both prediction methods is better

than PHD. The highest prediction accuracy comes from the combination

of PSIPRED and SAM-T99 results, where two ways of combination of

‘‘overlap’’ and ‘‘consensus’’ are defined as in Table 5. We have done test

runs using six sets of highest secondary structure prediction accuracy (see

italic bold numbers in Table 4) in our fold simulations, after the optimization

of the force field. The tertiary structure prediction results depend on both the

accuracy and the coverage of the secondary structure predictions. The

overlap set with a cutoff equaling to 5 and 0.49 for PSIPRED and SAM-T99,

respectively (see italic bold numbers in Table 4) works the best. This is used

in all subsequent simulations.

RESULTS AND DISCUSSION

In this section, we will report the results of applying our

methodology to a test set of 125 proteins. We first check the

folding ability and convergence of our basic force field

(without restraints) on 100 small proteins. Then, we use the

methodology on the whole set of proteins under the guide of

threading-based restraints. Finally, we describe the protocol

of selecting structures from the generated trajectories.

Test set selection

The test protein set employed in this work consists of two

subsets. The first subset includes 65 proteins used in

previous studies (Simons et al., 2001; Kihara et al., 2001;

Zhang et al., 2002); the second subset contains 60 proteins

selected from the PISCES server (G. Wang and R. L. Dun-

brack, unpublished results), which have a pairwise sequence

identity below 30% and a resolution cutoff better than 1.6 Å.

This subset includes more proteins of larger size and much

more diverse topology than the first 65-protein set. It also

turns out to be harder to fold than the first protein set by our

approach. The combined 125-protein set ranges in length

from 36 to 174 residues and has 43 a-helical proteins, 41 b-

sheet proteins, and 41 mixed a/b proteins, as assigned by

DSSP (Kabsch and Sander, 1983).

TABLE 3 Lowest energies found in test simulations of different algorithms and move sets

Simple move setz Combined move set§

hE1i{ Emin
|| hE1i Emin

IP* Ny PHS** RSyy PHS RS PHS RS PHS RS

1ppt_ 36 �676.9 �666.4 �704.2 �699.2 �700.8 �700.2 �713.1 �712.2

1eq7A 56 �1123.6 �1091.1 �1147.5 �1116.0 �1140.3 �1131.8 �1170.7 �1168.7

2cdx_ 60 �1047.4 �1032.9 �1116.6 �1111.2 �1062.1 �1082.1 �1149.1 �1154.6

1aiw_ 62 �1144.7 �1130.3 �1199.8 �1177.5 �1149.0 �1176.9 �1205.9 �1220.1

1ail_ 70 �1534.0 �1505.0 �1594.0 �1554.1 �1583.8 �1571.6 �1642.8 �1612.3

1kp6A 79 �1669.0 �1658.5 �1725.5 �1731.8 �1669.8 �1669.7 �1734.7 �1737.9

1npsA 88 �1719.0 �1714.1 �1799.5 �1797.6 �1745.3 �1747.8 �1835.6 �1843.6

1fna_ 91 �1924.1 1945.2 �2018.4 �2018.8 �1984.9 �1986.6 �2068.2 �2077.7

1t1dA 100 �2152.1 �2142.5 �2265.5 �2281.0 �2188.5 �2163.3 �2288.7 �2279.5

1tul_ 102 �1836.1 �1809.9 �1950.3 �1925.2 �1940.1 �1928.7 �2022.0 �2042.0

1bkf_ 107 �1769.5 �1730.9 �1895.6 �1842.9 �1867.7 �1867.6 �1989.3 �1971.8

2mcm_ 112 �1902.8 �1861.1 �2025.5 �1986.9 �1912.8 �1910.7 �2109.9 �2109.3

1dhn_ 121 �2621.5 �2600.6 �2740.5 �2694.6 �2647.5 �2646.7 �2733.0 �2734.3

1bfg_ 126 �2231.5 �2157.8 �2407.4 �2352.9 �2297.4 �2298.2 �2410.3 2411.0

1lid_ 131 �2527.2 �2467.7 �2699.2 �2638.9 �2618.7 �2603.2 �2708.4 �2701.6

1f4pA 147 �3516.3 �3534.8 �3673.8 �3663.2 �3555.0 �3555.2 �3703.7 �3701.1

2i1b_ 153 �2856.9 �2852.3 �3038.2 �3011.1 �2918.9 �2905.7 �3110.6 �3101.2

1qstA 160 �3483.0 �3481.5 �3708.8 �3689.0 �3533.7 �3532.3 �3727.2 �3701.8

1koe_ 172 �3029.0 �2974.4 �3225.2 �3167.9 �3081.4 �3069.4 �3278.5 �3255.2

1amm_ 174 �2877.3 �2758.6 �3129.0 �3003.1 �3027.1 �3007.0 �3288.9 �3217.3

h� � �i �2081.9 �2055.8 �2203.2 �2173.1 �2131.2 �2127.7 �2244.5 �2237.7

The underlines denote the lower energies between PHS and RS simulations.

*PDB code of test proteins.
yLength of test protein.
zSimulations using only basic 2- and 3-bond movements.
§Simulations using all the movements in the text.
{The average energy in the trajectory of the lowest-temperature replica.
||The lowest energy found in the simulation.

**Parallel hyperbolic sampling method.
yyReplica sampling method.

1154 Zhang et al.

Biophysical Journal 85(2) 1145–1164



Folding results

We performed PHS Monte Carlo simulations with Nrep

replicas. Nrep is dependent on the size of the simulated

protein and is a compromise of saving CPU time and keeping

sufficient communication between adjacent replicas. We

take Nrep ¼ 30 for small proteins of length N \ 100; Nrep ¼
35 for 100 \ N \ 150; and Nrep¼ 40 for N[150. For each

protein, two Monte Carlo runs are made, each including

1000 MC sweeps and using ;48 h of CPU time on a 1.26-

GHz Pentium III processor for a protein of 150 residues. We

select one snapshot after each MC sweep from the 12 lowest-

temperature replicas. The collected 24,000 structures are

then submitted to SCAR (Betancourt and Skolnick, 2001) for

clustering, which takes ;1 additional hour of CPU time.

In column four of Table 6, we list the folding results of the

CABS model without using predicted protein-specific local

and tertiary restraints provided by our threading program. If

we define a ‘‘successful’’ fold as one in which at least one of

the top five clusters has the RMSD to native below 6.5 Å, we

can successfully fold 41 cases using the basic force field.

There is an obvious bias of fold success to the protein

secondary structure class: 21 foldable cases are a-helical

proteins, nine are b-sheet proteins, and 11 are mixed a/b

proteins. All the successful folds occur on the 100 small

proteins of length N \ 120 amino acids. The dependence of

RMSD on protein size is shown in Fig. 6 a with both testing

(denoted as solid circles) and training (denoted as open
circles) protein sets. It shows that the folding results have no
obvious bias to the training protein set (13 foldable cases

belong to the 30 training proteins, compared with 41 foldable

cases to 100 proteins in total). This may mean that the

training set of 30 proteins is sufficiently large and rep-

resentative for a general optimization of the force field.

To fold proteins longer than 120 residues and to improve

the yield of small proteins, we exploit the predicted local and

tertiary restraints in our force field (see Eqs. 8 and 17). These

restraints are collected from consensus substructures found by

our threading programPROSPECTOR (Skolnick andKihara,

2001), where homologous sequences to the query protein are

entirely excluded from the data base. Although a portion of

the predicted restraints may be incorrect, it is indeed helpful to

guide the simulations to near-native states and significantly

improve the folding results in themajority of cases. In column

five of Table 6, we list the results of the simulations with

restraints. There are 83 cases with a RMSD of the best cluster

centroid below 6.5 Å to native, all within the top five clusters.

Fifty-one successful cases are from the 65-protein set and 32

TABLE 4 Accuracy and coverage of secondary structure prediction by different predictors

Cut1* Cut2
y PHD PSIPRED SAM-T99 Overlapz Consensus§

0 0.23 76.6 80.8 80.1 79.2 81.3
1 0.33 76.6 81.0 80.1 79.6 81.0

2 0.37 76.9 80.8 80.1 79.9 80.7
3 0.41 76.7 80.6 80.2 80.4 80.0

4 0.45 76.2 79.9 80.1 80.8 78.9

5 0.49 75.8 78.7 79.5 81.1 77.0

6 0.53 75.1 77.3 77.6 80.4 74.4

7 0.57 73.4 74.6 75.5 78.9 71.2

0 0.23 52.1 51.6 51.7 57.3 44.9
1 0.33 51.9 48.9 51.7 56.2 43.4

2 0.37 49.0 46.5 51.2 55.1 41.9
3 0.41 46.0 43.7 49.4 53.3 39.4

4 0.45 42.7 41.2 45.9 50.3 36.6

5 0.49 39.3 38.4 41.7 46.5 33.5

6 0.53 35.8 35.1 37.2 42.4 29.9

7 0.57 32.0 31.0 32.5 38.1 25.5

Averaged on 125 test proteins. The upper part of the table is the percentage of accuracy defined as, ðNcorrect=NÞ3 100, where Ncorrect is the number of residues

that are correctly assigned to either a-helix, b-strand or loop state, and N is the length of the sequence. The secondary structure elements in native structures

are classified according to DSSP (Kabsch and Sander, 1983). The lower part of the table is the average number of residues that are assigned as a-helix or

b-strand. The bold and italic bold numbers denote those used in our test runs for the evaluations of the secondary structure predictions in our fold simulations.

The italic bold numbers are used in our final fold simulations.

*The threshold of confidence level (0 ¼ low, 9 ¼ high) for PHD and PSIPRED predictors.
yThe threshold of confidence level for SAM-T99. The confidence level for SAM-T99 is defined as the difference of the possibilities of the two highest

confident assignments.
z§The definitions of ‘‘overlap’’ and ‘‘consensus’’ are in Table 5.

TABLE 5 Combinations of two secondary structure predictors

Predictor1 Predictor2 Overlap Consensus

a a a a

b b b b

a b a or b* a or by

a loop a loop

b loop b loop

loop loop loop loop

*yTake the assignment of higher confidence.
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TABLE 6 Summary of fold results on 125 benchmark proteins

ID* Stry Nz Clusterwo
§ Clusterw

{ Comb|| E1** M1
yy Y1

zz D1
§§ Bests

{{

Set65
||||

1a32_ a 64 4.63(3/3) 6.30(1/3) 6.30 6.30w 6.30w 6.30w 6.30w 4.57(435)

1ah9_ b 63 6.20(1/11) 5.09(1/5) 5.09 5.09w 5.09w 5.09w 5.09w 3.18(324)

1aoy_q a 65 6.84(4/5) 4.68(1/9) 4.68 4.68w 4.68w 4.68w 4.68w 2.22(325)

1bq9A b 53 7.05(7/19) 4.82(1/13) 4.82 4.82w 4.82w 4.82w 4.82w 2.87(123)

1bw6A a 56 4.79(2/3) 4.22(1/8) 4.22 4.22w 4.22w 4.22w 4.22w 2.96(699)

1c5a_q a 65 4.28(2/7) 4.25(2/4) 4.25 8.25 8.25 8.25 8.25 3.16(554)

1cewI ab 108 10.96(1/14) 6.33(2/7) 6.33 9.02 9.02 9.02 9.02 3.82(763)

1cis_q ab 66 5.12(4/9) 5.92(3/3) 5.92 6.65 6.65 6.65 6.65 3.96(493)

1csp_ b 67 6.37(4/11) 3.84(2/5) 3.84 10.57 4.32 4.32 4.32 3.36(211)

1ctf_q ab 68 5.54(3/4) 5.24(2/11) 5.24 9.91 9.91 9.91 9.91 3.94(777)

1erv_q ab 105 6.01(3/6) 2.09(1/8) 2.09 2.09w 2.09w 2.09w 2.09w 1.86(187)

1fas_q b 61 6.81(5/29) 3.21(1/4) 3.21 3.21w 3.21w 3.21w 3.21w 2.42(676)

1fc2C a 43 3.61(1/4) 3.92(1/4) 3.61 3.92w 3.92w 3.92w 3.92w 2.58(93)

1ftz_q a 48 5.07(1/2) 1.66(1/7) 1.66 1.66w 1.66w 1.66w 1.66w 1.20(311)

1gpt_q ab 47 6.30(1/25) 3.96(1/10) 3.96 3.96w 3.96w 3.96w 3.96w 2.19(214)

1hlb_ a 157 7.02(8/11) 4.68(1/10) 4.68 4.68w 4.68w 4.68w 4.68w 3.36(65)

1hmdAq a 113 7.58(1/6) 9.12(5/9) 7.58 13.99 9.12w 9.12w 9.12w 6.59(270)

1hp8_ a 68 4.67(2/3) 5.26(1/4) 5.26 5.26w 5.26w 5.26w 5.26w 4.14(319)

1ife_ ab 91 4.60(1/5) 8.76(4/4) 4.60 11.68 11.68 11.68 11.68 3.93(427)

1ixa_ b 39 6.04(4/31) 4.30(1/5) 4.30 4.30w 4.30w 4.30w 4.30w 2.40(648)

1iyv_ b 74 8.43(1/15) 7.60(2/9) 7.60 9.69 7.60w 7.60w 7.60w 6.28(407)

1kjs_q a 74 5.54(1/4) 8.23(2/3) 5.54 10.03 10.03 10.03 10.03 5.34(119)

1ksr_q b 100 8.03(5/16) 5.82(1/8) 5.82 5.82w 5.82w 5.82w 5.82w 4.57(133)

1lea_q a 72 5.69(5/5) 4.22(1/8) 4.22 4.22w 4.22w 4.22w 4.22w 2.92(79)

1mba_q a 146 10.25(3/11) 2.51(1/6) 2.51 2.51w 2.51w 2.51w 2.51w 2.10(804)

1ner_ a 64 6.35(2/8) 2.70(1/11) 2.70 2.70w 2.70w 2.70w 2.70w 2.28(174)

1ngr_ a 83 5.19(5/6) 3.39(1/7) 3.39 3.39w 4.80 3.39w 4.80 2.57(524)

1nkl_ a 77 5.50(2/7) 3.89(1/6) 3.89 3.89w 3.89w 3.89w 3.89w 2.91(356)

1nxb_q b 62 6.08(3/19) 2.35(1/7) 2.35 2.35w 2.35w 2.35w 2.35w 2.13(393)

1pdo_q ab 124 6.98(2/15) 6.66(1/3) 6.66 6.66w 8.56 6.66w 6.66w 5.34(102)

1pgx_ ab 59 5.62(3/7) 5.96(5/7) 9.30 10.80 9.31 9.31 5.96w 4.22(24)

1poh_ ab 85 9.10(5/9) 12.71(4/6) 12.71 12.74 12.74 12.74 12.74 9.93(10)

1pou_ a 69 4.41(5/9) 4.22(4/7) 4.22 9.57 9.57 9.57 9.57 3.38(47)

1pse_q b 68 9.55(2/13) 7.88(9/11) 9.15 10.81 10.81 10.81 10.81 5.81(682)

1rip_ b 76 7.97(5/8) 8.53(2/7) 8.53 9.41 9.41 9.41 9.41 7.21(236)

1rpo_ a 61 5.47(1/3) 4.55(1/2) 4.55 4.55w 24.82 4.55w 4.55w 3.18(456)

1shaAq ab 103 8.66(7/13) 4.05(1/10) 4.05 4.05w 4.05w 4.05w 4.05w 2.95(595)

1shg_ b 57 7.62(7/8) 4.59(2/8) 4.59 9.89 10.40 10.40 10.40 3.54(499)

1sro_q b 71 7.65(1/7) 4.27(1/8) 4.27 4.27w 4.27w 4.27w 4.27w 3.21(107)

1stfI ab 98 8.79(1/12) 4.92(1/9) 4.92 4.92w 4.92w 4.92w 4.92w 2.91(551)

1stu_q ab 68 7.68(2/6) 6.31(2/6) 6.31 6.72 6.72 6.72 6.72 4.97(101)

1tfi_q b 47 6.79(2/2) 6.22(2/7) 6.22 10.23 6.22w 6.22w 6.22w 4.35(526)

1thx_ b 108 6.22(3/10) 2.33(1/6) 2.33 2.33w 2.33w 2.33w 2.33w 2.10(547)

1tit_ b 89 7.88(7/15) 1.88(1/10) 1.88 1.88w 5.45 1.88w 1.88w 1.71(896)

1tlk_ b 95 9.27(4/21) 2.24(1/6) 2.24 2.24w 2.24w 2.24w 2.24w 1.99(868)

1tsg_ ab 98 8.19(15/18) 9.08(3/9) 9.08 12.49 9.08w 9.08w 9.08w 6.64(840)

1ubi_q ab 72 6.60(3/7) 1.74(1/11) 1.74 1.74w 1.74w 1.74w 1.74w 1.54(821)

1vcc_ ab 76 7.07(3/16) 7.29(12/15) 7.42 7.42 10.70 10.70 10.70 6.54(68)

1vif_ b 52 6.87(9/12) 7.93(3/9) 7.12 8.58 7.93w 7.93w 7.93w 5.33(215)

1wiu_ b 93 9.95(2/10) 2.22(1/8) 2.22 2.22w 2.22w 2.22w 2.22w 1.96(619)

256bAq a 106 3.61(2/3) 3.18(2/7) 3.18 8.60 3.19w 3.19w 3.19w 2.17(685)

2af8_q a 86 11.07(5/6) 3.68(1/9) 3.68 3.69w 6.87 3.69w 3.69w 3.19(463)

2azaAq b 129 10.20(38/51) 2.79(1/13) 2.79 2.79w 2.79w 2.79w 2.79w 2.66(475)

2bby_q a 67 9.10(4/6) 6.65(2/6) 6.65 9.71 9.71 9.71 9.71 4.34(35)

2ezh_q a 65 5.78(3/3) 4.74(3/5) 4.74 8.69 4.74w 4.74w 4.74w 3.13(377)

2ezk_q a 90 8.06(4/7) 8.98(4/6) 8.98 12.59 12.39 12.39 12.39 7.28(278)

2fdn_q ab 55 5.73(1/41) 2.27(1/12) 2.27 2.27w 2.27w 2.27w 2.27w 1.97(542)

2fmr_ ab 64 5.66(5/9) 4.97(1/9) 4.97 4.96w 4.96w 4.96w 4.96w 3.98(216)

2lfb_ a 70 7.47(2/5) 6.37(4/7) 6.37 10.29 10.29 10.29 10.29 5.95(35)

2pcy_ b 99 8.00(4/36) 4.25(1/11) 4.25 4.25w 4.25w 4.25w 4.25w 3.47(135)

2ptl_q ab 61 3.32(1/5) 2.63(1/6) 2.63 2.63w 2.63w 2.63w 2.63w 2.02(528)

1156 Zhang et al.

Biophysical Journal 85(2) 1145–1164



TABLE 6 (Continued)

ID* Stry Nz Clusterwo
§ Clusterw

{ Comb|| E1** M1
yy Y1

zz D1
§§ Bests

{{

2sarAq ab 96 9.57(11/36) 7.55(4/7) 7.55 11.36 11.36 11.36 11.36 5.35(666)

4fgf_ b 124 10.40(29/49) 3.75(2/13) 3.75 6.11 3.75w 6.11 3.75w 3.11(492)

5fd1_ ab 106 9.19(3/8) 5.79(1/6) 5.79 5.79w 10.69 5.79w 5.79w 4.76(303)

6pti_ ab 56 5.02(2/8) 4.04(5/9) 6.31 6.31 4.04w 4.04w 4.04w 3.48(545)

Set60***

1ail_ a 70 7.31(1/3) 4.01(2/5) 4.01 8.44 8.44 8.44 8.44 2.77(565)

1aiw_ b 62 8.75(4/34) 8.07(4/19) 8.07 8.74 9.76 8.74 9.76 6.95(269)

1amm_ ab 174 12.86(62/62) 10.08(1/6) 10.08 10.08w 13.84 13.84 13.84 9.06(998)

1apf_ b 49 6.04(5/27) 4.43(2/10) 4.43 9.31 6.59 9.31 9.31 4.31(228)

1b2pA b 119 12.52(31/56) 11.39(19/32) 12.09 13.93 12.31 12.60 12.31 10.53(613)

1bd8_ a 156 13.36(3/8) 3.03(1/11) 3.03 3.03w 3.03w 3.03w 3.03w 2.22(629)

1bfg_ b 126 10.71(32/54) 3.72(1/13) 3.72 3.72w 3.72w 3.72w 3.72w 3.20(831)

1bkf_ ab 107 8.49(5/24) 7.52(3/16) 7.52 14.21 12.45 12.45 12.45 6.65(973)

1bkrA a 108 7.82(3/7) 2.12(1/14) 2.12 2.12w 2.12w 2.12w 2.12w 1.76(785)

1bm8_ ab 99 8.11(8/19) 8.98(2/11) 8.98 11.91 9.84 9.84 9.84 8.53(399)

1c3mA b 145 11.02(27/36) 10.53(5/20) 12.96 14.98 10.53w 12.96 10.53w 9.55(551)

1c8cA ab 64 8.97(26) 8.72(5/7) 10.24 10.24 11.87 11.87 11.87 8.41(4)

1cpq_ a 129 9.76(3/7) 6.26(5/5) 10.90 15.43 10.90 10.90 6.26w 5.16(498)

1cy5A a 92 11.60(3/5) 1.76(1/9) 1.76 1.76w 1.76w 1.76w 1.76w 1.47(711)

1dhn_ ab 121 9.47(1/14) 2.91(1/11) 2.91 2.91w 2.91w 2.91w 2.91w 2.41(554)

1dxgA b 36 6.46(3/11) 4.46(3/7) 4.46 7.44 6.15 6.15 6.15 3.46(143)

1e6iA a 110 8.42(4/7) 12.07(2/3) 12.00 22.98 12.07w 12.07w 12.07w 10.28(2)

1eca_ a 136 10.12(3/10) 3.37(1/10) 3.37 3.37w 3.37w 3.37w 3.37w 2.67(862)

1eq7A a 56 7.01(3/3) 3.72(2/5) 3.72 17.15 17.15 17.15 17.15 1.89(84)

1ezgA b 82 11.03(40/44) 9.38(4/9) 9.38 11.22 9.38w 9.38w 9.38w 9.13(24)

1f4pA ab 147 7.83(2/13) 2.80(1/14) 2.80 2.80w 2.80w 2.80w 2.80w 2.64(880)

1f94A b 63 8.22(13/24) 3.92(1/12) 3.92 3.92w 3.92w 3.92w 3.92w 3.56(601)

1fazA a 122 9.01(3/11) 10.84(3/12) 10.84 12.82 12.24 12.24 12.24 8.59(477)

1fk5A a 93 4.10(2/9) 5.05(2/5) 5.05 9.21 5.05w 5.05w 5.05w 4.07(421)

1fna_ b 91 5.11(1/9) 3.06(1/11) 3.06 3.06w 3.06w 3.06w 3.06w 2.74(367)

1fw9A ab 164 14.11(13/20) 13.71(5/22) 14.26 14.26 13.77 13.77 13.77 12.78(866)

1gnuA ab 117 10.79(3/12) 9.34(11/13) 11.76 14.72 14.72 14.72 14.72 9.07(56)

1hbkA a 89 8.19(4/9) 8.52(2/7) 8.52 14.54 14.84 14.54 14.84 7.45(329)

1hoe_ b 74 9.39(5/13) 8.57(1/12) 8.57 8.57w 10.19 10.19 10.19 6.91(216)

1i27A ab 73 9.11(3/6) 5.60(2/7) 5.60 7.79 7.79 7.79 7.79 4.45(305)

1i2tA a 61 3.64(1/6) 2.49(2/6) 2.49 10.20 10.20 2.49w 2.49w 1.80(151)

1isuA a 62 5.54(6/22) 2.65(1/14) 2.65 2.65w 2.65w 2.65w 2.65w 2.02(538)

1koe_ ab 172 13.02(22/50) 14.45(5/8) 15.22 16.18 16.35 16.35 16.35 13.67(15)

1kp6A ab 79 10.01(8/14) 9.69(2/15) 9.69 9.73 9.73 9.73 9.73 8.10(909)

1lid_ ab 131 11.42(2/47) 2.32(1/13) 2.32 2.32w 2.32w 2.32w 2.32w 2.22(530)

1lkkA ab 105 7.57(9/20) 3.87(1/11) 3.87 3.87w 3.87w 3.87w 3.87w 2.85(854)

1msi_ b 66 7.72(19/28) 4.40(5/26) 9.22 10.94 8.85 10.25 4.40w 3.96(947)

1nbcA ab 155 12.60(14/45) 5.77(1/13) 5.77 5.77w 5.77w 5.77w 5.77w 4.97(903)

1nkd_ a 59 1.78(1/2) 4.21(2/2) 1.78 23.81 23.81 23.81 23.81 3.15(212)

1npsA ab 88 6.89(33/34) 3.42(1/13) 3.42 3.42w 3.42w 3.42w 3.42w 3.09(880)

1opd_ ab 85 3.55(1/9) 10.21(4/8) 3.55 13.24 13.24 13.24 13.24 8.81(9)

1ppt_ a 36 1.92(1/2) 7.00(3/5) 1.92 7.64 7.64 7.64 7.64 3.25(7)

1qj8A b 148 12.00(8/43) 12.13(2/10) 12.13 17.99 12.13w 12.13w 12.13w 11.00(1)

1qqhA ab 144 13.58(8/30) 14.46(15/16) 16.68 17.08 16.68 17.08 16.68 13.02(9)

1qstA ab 160 9.09(6/20) 7.50(1/3) 7.50 7.50w 7.50w 7.50w 7.50w 5.38(497)

1sfp_ b 111 7.48(2/18) 6.00(1/13) 6.00 6.00w 13.26 6.00w 13.26 5.75(625)

1sra_ a 151 10.71(3/12) 11.09(1/10) 11.09 11.09w 11.09w 11.09w 11.09w 8.64(144)

1t1dA ab 100 8.96(7/13) 3.63(1/13) 3.63 3.63w 3.63w 3.63w 3.63w 2.72(357)

1tul_ b 102 6.87(6/19) 8.13(3/12) 8.13 10.41 9.49 9.49 9.49 6.11(977)

1utg_ a 70 6.24(3/5) 4.93(3/5) 4.93 12.87 12.87 12.87 12.87 4.26(138)

1who_ b 94 5.24(4/24) 5.29(1/12) 5.29 5.29w 5.29w 5.29w 5.29w 3.10(887)

1wkt_ b 88 6.75(14/47) 10.92(4/23) 10.92 11.47 10.92w 10.92w 10.92w 9.95(464)

2a0b_ a 118 4.25(1/6) 12.76(3/9) 4.25 13.22 13.22 13.22 13.22 9.90(63)

2cdx_ b 60 6.98(7/16) 3.61(1/7) 3.61 3.61w 3.61w 3.61w 3.61w 3.04(913)

2erl_ a 40 6.51(2/2) 6.08(4/4) 6.08 8.91 8.59 8.59 8.59 4.79(101)

2hbg_ a 147 10.19(4/9) 1.72(1/11) 1.72 1.72w 1.72w 1.72w 1.72w 1.73(904)
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are from the harder 60-protein set (The trajectories and cluster

centroids of all the 125 proteins are available on our website:

http://www.bioinformatics.buffalo.edu/abinitio/125).

The improvement using tertiary restraints occurs on both

small and large proteins (see Fig. 6 b). For the 100 small

proteins of lengths less than 120 residues, the number of

foldable cases with restraints increases to 70 (compared to 41

without restraints). Without restraints especially, the pro-

gram can never fold proteins of lengths longer than 120

residues. Under the guide of restraints, we can fold 13 of the

25 large proteins; none can be folded without predicted side

chain contacts. Moreover, within all 83 cases, 33 cases

belong to a-helical proteins, 27 cases to b-sheet proteins,

and 23 to mixed a/b proteins, which show a considerably

reduced folding bias to the secondary structure class,

compared to the pure ab initio results.

The effect of restraints on the degree of folding success

depends on its accuracy. In Fig. 7, we show the dependence

of the fold improvement on the accuracy of the predicted

contacts and local distant restraints. There is a strong

correlation between the RMSD improvement and the

accuracy of long-range contact restraints. This correlation

is much less obvious for the local distance restraints, which

seems to indicate that the local short-range restraints are less

important. This may be due to the fact that the information of

short-range correlations has been included due to the

relatively high accurate secondary structure prediction and

the short-range distance restraints do not provide much

additional information. However, our simulations show that

appropriate short-range restraints indeed considerably speed

up the formation of local structures.

As expected, when the accuracy of contact restraints is too

low, a successful fold from a ‘‘pure’’ ab initio simulation

can be spoiled by inclusion of poorly predicted restraints.

According to Fig. 7, when accuracy of contact restraints is

higher than 22% or the ratio of the number of correct

restraints to protein length is larger than 0.2, the restraints

almost always have a positive effect on folding. To alleviate

the negative influence of the bad restraints, we combine the

clusters from both simulations as follows: The best cluster is

TABLE 6 (Continued)

ID* Stry Nz Clusterwo
§ Clusterw

{ Comb|| E1** M1
yy Y1

zz D1
§§ Bests

{{

2i1b_ b 153 12.18(10/43) 11.85(1/21) 11.85 11.85 11.85 11.85 11.85 10.94(398)

2mcm_ b 112 9.46(4/20) 9.75(2/11) 9.75 13.89 13.89 13.89 13.89 8.27(461)

2sak_ ab 121 9.17(9/29) 11.23(12/24) 11.86 11.86 11.25 14.19 11.25 8.02(913)

3ebx_ b 62 7.35(3/26) 2.24(1/15) 2.24 2.24w 2.24w 2.24w 2.24w 1.53(734)

Average 7.72(6.4/16.1) 5.90(2.5/9.4) 5.84 7.82 7.59 7.31 7.26 4.72(434)

Total numberyyy:

RMSD\6.5: 42(41) 83(83) 85 58 60 65 67 94

RMSD\6.0: 31(29) 75(75) 77 55 57 61 63 92

RMSD\5.5: 22(21) 69(69) 71 51 55 57 59 89

RMSD\5.0: 15(14) 64(64) 66 48 50 53 55 83

RMSD\4.5: 11(10) 55(55) 56 42 43 46 47 77

RMSD\4.0: 7(7) 41(41) 44 36 35 38 38 69

RMSD\3.5: 3(3) 29(29) 31 27 26 29 28 61

RMSD\3.0: 2(2) 22(22) 24 21 20 22 22 42

*PDB code of test proteins. The 30 proteins marked with q are those used in training for the force-field optimization.
yThe structure type assigned by DSSP (Kabsch and Sander, 1983).
zProtein length.
§RMSD of the best cluster by the simulations without using protein-specific restraints. The first number in parentheses denotes the rank of the best cluster

produced by SCAR (Betancourt and Skolnick, 2001), and the second number in parentheses is the total number of produced clusters. The cluster rank is

obtained from the average energy of the structures in the cluster.
{RMSD of the best cluster by the simulation with the use of threading-based restraints by PROSPECTOR (Skolnick and Kihara, 2001). The first number in

parentheses denotes the rank of the best cluster produced by SCAR, and the second number in parentheses is the total number of produced clusters. The

cluster number is obtained from the average energy of the structures in the cluster.
||RMSD of the best cluster among the five combination clusters, i.e., the four lowest energy clusters from Clusterw plus the single lowest energy cluster from

Clusterwo.

**RMSD of the cluster centroid of the lowest energy E. w denotes that the lowest cluster is the cluster with the lowest RMSD to native.
yyRMSD of the cluster centroid of the biggest size M. w denotes that the biggest cluster is the cluster with the lowest RMSD to native.
zzRMSD of the cluster centroid of the lowest Y. w denotes that the cluster of lowest Y is the cluster with the lowest RMSD to native.
§§RMSD of the cluster centroid of the highest density D. w denotes that the cluster of highest density is the cluster with the lowest RMSD to native.
{{RMSD of the best structure in the structure pool that is picked up from Monte Carlo trajectories and submitted to clustering processes. The number in

parentheses is the number of MC steps when the best structure is produced.
||||The 65-protein set that was used in our previous studies (Kihara et al., 2001; Zhang et al., 2002).

***The 60 harder-protein set selected in the PISCES server (G. Wang and R. L. Dunbrack, unpublished results).
yyyThe number of the proteins with RMSD below a threshold value. The number in parentheses is the number of the proteins if we only count the top five

clusters.
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the lowest energy cluster in most of the successful pure ab

initio simulations because only a good ab initio force field

can fold a protein without restraints. Thus, we take the lowest

energy cluster from the pure ab initio simulations and

combine it with the four lowest energy clusters from re-

straint-based simulations. As shown in column six of Table

6, this combination converts all the significant spoiled cases

by the inclusion of poorly predicted restraints into successful

folds. Moreover, we retain all the successful folding cases in

the restraint-based simulation set.

As a comparison, we also made Monte Carlo runs of the

SICHO model on the harder subset of proteins with similar

CPU times. The results are shown in the histogram in Fig. 8.

It should be noted that these 60 proteins represent diverse

structure categories, and no protein from this set was used in

the training of either the CABS or the SICHO force field. The

folding rate is 1/3 for the SICHO model and 1/2 for the

CABS model. However, in fairness, the SICHO model has

not yet been subjected to the same optimization procedure as

done in the CABS model.

Identification of correct folds

An important step in ab initio structure prediction is the

evaluation of the folding results. There are two relevant

problems involved in the evaluation process. At first, be-

cause of imperfections of the force field, the global energy

minimum usually does not correspond to native state. Thus it

is a nontrivial task to identify the best fold (i.e., closest to

native) from the simulation trajectories. Secondly, unlike

homology modeling or threading where the sequence

identity of the target to the template and the z-score of

sequence alignments are important parameters to indicate the

likelihood of success of the predictions, we lack a reliable

indicator of the likelihood of success of the blind ab initio

structure predictions. This problem is especially relevant

when multiple ab initio simulations are performed with

different force fields (for example, using different sets of

threading-based restraints in our case). Although some sets

of restraints can help the simulation to generate correct folds

and some other sets do not, it is important to choose the

simulation of highest likelihood of success based on the

output of the ab initio simulations.

In what follows, we first address the issues of how to select

the best structure from an individual simulation trajectory.

We introduce several quantities that are highly correlated

with the likelihood of successful fold selection. We perform

five sets of simulations under different restraints, and present

an automatic procedure to select the best structures from the

multiple simulations by combining appropriate fold selection

criteria.

Selecting the best fold from an individual simulation

In previous approaches to ab initio structure predictions, the

authors usually cluster the generated structures (Shortle et al.,

1998; Betancourt and Skolnick, 2001) and choose the cluster

with the lowest energy (Kolinski et al., 2001; Kihara et al.,

FIGURE 6 (a) RMSD of the best cluster in the top five clusters versus

protein length N in the CABS simulations without using protein-specific

restraints. The solid circles denote the training proteins that are used in the

optimization of force field. The open circles are the test proteins. All the

successful fold cases are small proteins with N \ 120 amino acids. (b)

RMSD of the best cluster in top five clusters versus protein length N in the

CABS simulations with threading-based restraints. The large proteins ([120

residues) can be folded only when appropriate restraints are incorporated in

the simulations.

FIGURE 7 RMSD improvement on including the threading-based tertiary

and secondary restraints versus the accuracy of the restraints.

DRMSD ¼ RMSDwo � RMSDw, where RMSDwo and RMSDw are the

RMSD of the best clusters to native structures in the simulations without and

with using the threading-based restraints. N is the number of the amino acids

of proteins, Ncc the number of correct contact restraints, Ncp the number of

total predicted contact restraints, Ndc the number of correct short-range

distant restraints, and Ndp the number of total predicted distant restraints.
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2001). Although clustering has considerable success in

selecting the correct folds (Simons et al., 2001; Kihara et al.,

2001), this approach can have an inherent contradiction.

Although the aim of clustering is to identify the low free

energy structures, the selection of the lowest energy structure

neglects the configurational entropy, because the structure of

lowest energy is not necessary that of lowest free energy.

Thus, we consider a combination of the energy and free

energy

Y ¼ E� kT logM; (21)

where E is the average energy of the structures in a cluster,

and M is the multiplicity of the cluster (number of structures

in the cluster). We found that the discriminative ability of Y
to choose native structures is better than either E or M. As

shown in Table 6, by selecting the cluster of lowest energy E,
in 61 of 125 cases, we chose the best cluster (i.e., the lowest

RMSD cluster to native structure among all the produced

clusters) and 58 of the lowest energy clusters have a RMSD

below 6.5 Å (see column seven of Table 6). By selecting the

cluster of largest multiplicityM, in 67 cases the best cluster is

chosen, and 60 of the selected clusters have a RMSD below

6.5 Å (see column eight of Table 6). By selecting the cluster

of lowest Y, in 73 cases, the best cluster is chosen and 65 of

the selected clusters have a RMSD below 6.5 Å (see column

nine of Table 6).

Another relevant indicator of the quality of the predicted

structures is the normalized structure density of cluster

defined as

D ¼ M

hRMSDiMtot

; (22)

whereM is the multiplicity of structures in the cluster,Mtot is

the total number of structures submitted to the clustering

processes, and hRMSDi denotes the average RMSD to the

cluster centroid of the structures in the given cluster. D

reflects the degree of structure convergence in the simu-

lations, and it is also related to the coordination among the

different terms in the force field. If a conformation is favored

by the majority of terms in the force field, the local minima of

different energy terms will reinforce each other; this results

in a deeper energy basin in the total energy landscape. The

corresponding structural cluster therefore has a higher

density D. On the other hand, if a conformation is favored

by a part of the energy terms but ‘‘contradicted’’ by other

terms, the energy basin of the total energy landscape will be

frustrated. The structure cluster will be less convergent and

therefore have a lower structure density. This can occur,

when, for example, the threading-predicted restraints have

some ‘‘contradictions’’ with the general intrinsic potentials

in the CABS model or when restraints themselves are

divergent (collected from inconsistent templates). Alterna-

tively the nonrestraint parts of the force field may be in

contradiction.

In Fig. 9, we show the RMSD to native of all the cluster

centroids versus their normalized structure density. There is

a strong correlation between the fold quality and the structure

density. If we define the best cluster as a cluster of lowest

RMSD, most of the best clusters (denoted by solid circles)
have higher structure density as compared to the high RMSD

clusters. As shown in column 10 of Table 6, by selecting the

highest-density cluster, we choose the best fold in 76 of 125

cases and 67 of the chosen clusters have aRMSDbelow6.5 Å.

Indicator of likelihood of success of the folding simulation

Now we turn to the issue of how to judge the likelihood of

success of a blind simulation. As mentioned above, if the

FIGURE 9 RMSD to native of all cluster centroids for 125 proteins versus

the normalized structure density. The solid circles denote the best clusters of

lowest RMSD to native in each of the 125 proteins.

FIGURE 8 Comparison of the folding results by the SICHO and CABS

models on the 60-nonhomologous-protein set. The shown data are the

number of proteins that have their best cluster below a given RMSD

threshold versus the RMSD threshold.
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force field is a combination of consistent and reinforcing

energy subterms, the resultant landscape tends to have

a funnellike shape with deep energy basins, which results in

convergent structure clusters in the fold simulation. Recent

experimental studies of denatured state showed that this

funnellike landscape is a basic and necessary characteristic

of real proteins to keep the native structure as a stable and

unique state (Shea and Brooks, III, 2001). This funneling

characteristic can be quantitatively evaluated by the

maximum cluster density Dmax, or the maximum multiplicity

rate of clusters Rmax ¼ Mmax=Mtot, where Mmax is the

multiplicity of the largest cluster. It can also be a represented

by the normalized Y-gap between the energy basin of lowest

Y and other basins, i.e.:

L� score ¼
1

m
+
m

i¼1

Yi � Yminffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
+
m

i¼1

Y
2

i � 1

m
+
m

i¼1

Yi

� �2
s ; (23)

where Y is defined in Eq. 21 and Ymin is the lowest Y among

all m clusters.

In Fig. 10, we show the dependence of the RMSD of the

best cluster on Dmax, Rmax, and L-score, respectively,

demonstrating that these parameters can be considered as

indicators of the likelihood of success of the simulations.

In Fig. 11, we show the successful folding rate and

average RMSD of best clusters versus the threshold values of

maximum cluster density. With higher density cutoff, we

have higher rate of successful folds and lower average

RMSD. For example, for the simulations with Dmax[ 0.18,

95% of cases (63 of 66 cases) are successfully folded, and the

average RMSD is 3.92 Å. This is dramatically better than the

overall fold rate 66% (83 of 125) and the overall average

RMSD of 5.90 Å. Furthermore, if we select the highest D
cluster in these 66 cases of Dmax [ 0.18, 82% of them (54

cases) have RMSD below 6.5Å.

Automatic procedure of selecting top five clusters from
multiple simulations

To demonstrate the usage of the combination of above-

defined parameters, wemake five sets of simulations on the 60

hard proteins, each set taking different restraints that were

obtained by using different threading procedures and cutoff

parameters. On average, there are ;10 clusters for each

protein in each individual run. To select the five best clusters

for each protein from these roughly 50 clusters, we at first sort

the clusters in each simulation according to Y and D, and the
different simulation sets according to Dmax. Then, we choose

the five clusters according to following automatic procedures:

1. Select the five clusters of highest D from five sets of

simulations.

2. If any pair of clusters is of the same fold (\2 Å),

displace the cluster selected from lower Dmax simulation

with the cluster of lowest Y from the simulation of higher

Dmax.

3. Repeat step 2 until five different clusters are chosen.

In column three of Table 7 we show the selection result

according to the automatic procedure. Compared with the

absolutely best clusters in column four, this procedure allows

FIGURE 10 RMSD of the best cluster to native versus different funneling

parameters of the energy landscape. (a) The maximum structure density

Dmax. (b) The maximum multiplicity Rmax. (c) L-score of energy landscape

(defined in Eq. 23).
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us to select almost all the best folds in the top five clusters (all

37 successful cases with a RMSD \ 6.5Å). Column two

shows the selection of five clusters if we choose them just

according to cluster energy E in different sets of simulations,

which is much worse than that by above combined selection

procedure.

SUMMARY

In this work, we have developed a new ab initio modeling

approach to the tertiary protein structure prediction, based on

a simplified lattice representation of the Ca, Cb, and center of

side group of protein chains. This new lattice description has

a high geometric fidelity. The basic energy function consists

of general short-range correlations biased to regular and

predicted secondary structures, amino acid-dependent short-

and long-range interactions derived from the PDB data base,

hydrogen bonds, electrostatic interactions, one-body burial

interactions, and a general bias to the expected contact order

and contact number that depends on protein size and

secondary structure. These energy terms from different

sources are combined and optimized by a set of 303 60,000

nonredundant structure decoys, by maximizing both the

correlation of RMSD of decoys to native and their energies,

and the relative energy gap between native and decoy

ensemble. This combined force field provides a basic

working platform for further assembly and optimization of

tertiary structures when threading information (i.e., predicted

side-chain contact restraints) are available. It has also shown

to be able to successfully assemble structures from sparse

NMR experimental NOE data (Li et al., 2002). Here, we used

the intrinsic platform (without restraints) on the folding

experiment of 100 small proteins (\120 amino acids). 41%

of them can be successfully folded with the best RMSD of

the top five clusters below 6.5 Å. Twenty-one foldable cases

are a-helical proteins, nine are b-sheet proteins, and 11 are

mixed a/b-proteins. There is no obvious bias to the training

set (13/30 foldable cases for training proteins compared to

41/100 foldable cases in total), which demonstrates that the

training set of decoys is large enough for a universal

derivation of the force field.

The long-range contact prediction and short-range dis-

tance prediction are collected from templates found by our

threading program PROSPECTOR (Skolnick and Kihara,

2001). These data are incorporated into our CABS force field

as loose side-chain pairwise and local distance restraints. It

should be mentioned that, even when no template is hit with

significant z-scores in the threading program, some useful

information could still be extracted from the consensus

substructures with weak z-score hits. These threading-based

restraints in most cases can significantly improve the folding

results, even if the prediction accuracy is low. More

specifically, when the accuracy of contact prediction is

higher than 22% or the ratio of correctly predicted contact

number to protein length is larger than 20%, the effect of

restraints on the folding is almost always positive. There is

no obvious sensitivity on the accuracy of local short-range

FIGURE 11 (a) Rate of successful fold (best RMSD \ 6.5 Å) versus the

cutoff of maximum density (Dmax [ Dcut). (b) Average RMSD versus the

cutoff of maximum density.

TABLE 7 Selection of top five clusters from multiple

simulation runs

Nbest
y NlowE

z Ncomb
§ Nabs

{

RMSD \ 6.5Å* 32 33 37 37

RMSD \ 6.0Å 29 30 35 35

RMSD \ 5.5Å 28 29 31 32

RMSD \ 5.0Å 26 26 28 30

RMSD \ 4.5Å 24 25 28 28

RMSD \ 4.0Å 22 23 26 27

RMSD \ 3.5Å 19 19 21 21

RMSD \ 3.0Å 12 12 15 15

*Number of proteins with a RMSD below a threshold value in the top five

selected clusters.
ySelection of the top five clusters according to energy from the best set of

simulations.
zSelection of the top five clusters from all five sets of simulation runs

according to energy.
§Selection of the top five clusters from all five sets of simulation runs

according to the combination of Y, D, and Dmax (see text).
{The absolutely best clusters among the five sets of simulation runs.
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distance predictions. This may be because short-range

interactions are already dictated by the high accurate sec-

ondary structure predictions (the combination of the

PSIPRED (Jones, 1999) and SAM-T99 (Karplus et al.,

1998) secondary structure predictors) that have been

incorporated in our force field, and therefore the short-range

restraints do not provide much additional information.

The improvement by including the tertiary restraints

occurs for both small- and large-size proteins. For 100 small

proteins \120 residues, the program can fold 70 cases with

restraints compared to 41 in pure ab initio folding. The

intrinsic force field, especially, can never fold proteins[120

residues in length. Under the guide of restraints, however,

the program can fold 13 cases of the 25 larger proteins with

lengths ranging from 120 to 174 residues. Overall, in the

restraint-based simulations, 33 foldable cases belong to

a-helical proteins, 27 belong to b-sheet cases, and 23 belong

to a/b-proteins, which shows a less obvious bias toward the

protein topology category than the pure ab initio simulations.

We found that the structure density of cluster D and

combination of energy and free energy Y are more dis-

criminative than the often-used energy E or cluster size M in

the selecting of best-folded structures. In the folding of 125

proteins, if we select one cluster according to the lowest E, or
biggest M, or lowest Y, or highest D, the numbers of cases

that select the lowest RMSD are 61, 67, 73, and 76,

respectively. The numbers of cases that have a RMSD below

6.5 Å in the first cluster in these selections are 58, 60, 65, and

67, respectively.

The coherence of the energy terms in the force field and

the funnellike characteristics of the energy landscape can be

quantitatively evaluated by the maximum cluster density,

maximum multiplicity rate, or L-score. There are strong

correlations between the best RMSD and these funneling

parameters, which demonstrate that the parameters can be

used as indicators of the likelihood of success of fold

simulations. For the simulations of 125 proteins, if we take

a cutoff of maximum density Dmax[0.18, 95% of cases (63

of 66) are successfully folded, which is much larger than the

overall folding rate of 66% (83 of 125).

The combination of the discriminative parameters and the

indicator parameters of likelihood of success folds can be

used for selection of the best structures from multiple

simulations that are run using different force fields (e.g.,

based on different tertiary restraints). In an evaluation of five

sets of test simulation runs, by sorting the simulations

according to the indicator parameters and sorting the clusters

according to the discriminative parameters, we can select

almost all the absolute best structures in the top five chosen

clusters. This could not be achieved by the selection based on

traditional average energy or cluster size. Because our

procedures are fully automatic from the trajectory generation

to the identification of final structures, these approaches can

be applied to large-scale structure predictions. A compre-

hensive prediction survey of PDB structure data base and the

subsequent genome-scale structure predictions based on

these approaches are in progress.
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