%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
		% B-factor and local structure quality estimation %
		%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1. How was the local quality estimated?

    The local quality was defined as the distance deviation (in Angstrom) between residue positions 
    in the model and the native structure. It was estimated using support vector regression that makes 
    use of the local structural between the model and (1) threading templates, (2) structure alignment 
    templates, (3) reference decoys, and (4) sequence-based secondary structure and solvent accessibility 
    predictions. Large-scale benchmark tests show that the estimated local quality has an average error 
    of 1.4 Angstrom and AUC score of 0.89 for well-predicted I-TASSER models. 

    Based on these tests, the local quality estimations tend to be  more accurate for residues:
	 1) that have higher threading alignment coverage
	 2) that are located at alpha-helix and beta-strand regions
	 3) that are buried (at 25% threshold)

    The estimated local quality for the model is available at the columns 68-74 in the model's PDB file
    and also at the bottom of this page (the column with label RSQ_3).

2. What is B-factor?

    The B-factors can be taken as indicating the stability of different parts of the structure. 
    Atoms with low B-factors are well-ordered and those with high B-factors are very flexible. 

    Normalized B-factor for a target protein is defined as z-score-based normalization of the 
    raw B-factor values. The normalized B-factor (called B-factor profile, BFP) is predicted using a 
    combination of both template-based assignment and profile-based prediction. Based on the distributions
    and predictions of the BFP, residues with BFP values higher than 0 are less stable in experimental 
    structures. The BFP is converted back to B-factor by inverse z-score-based transformation.
    The B-factor for the model is available at the columns 61-66 in the model's PDB file. Both normalized at 
    and raw B-factors are available at the bottom of this page (the columns with labels nBF and rBF). 

3. How were the TM-score and RMSD estimated?
    
    TM-score and RMSD are known standards for measuring the structural similarity between two structures which 
    are usually used to measure the accuracy of structure modeling when the native structure is known. In case
    where the native structure is unknown, it becomes necessary to predict the quality of the modeling prediction, 
    i.e. what is the distance between the model and its native structure? To answer this question, we tried to 
    predict the TM-score and RMSD of the model relative to its native structure based on the predicted local 
    distances, with the corresponding TM-score and RMSD formula.


For more information about the local quality and B-factor predictions, please refer to the 
following article:

Jianyi Yang and Yang Zhang, ResQ: A unified algorithm for estimating B-factor and residue-specific quality 
of protein structure prediction, submitted, (2014).


Estimated TM-score: 0.91
Estimated RMSD: 1.58 Angstrom

Estimated local quality and B-factor:
#RES	SS	SA	COV	nBF	rBF	RSQ_1	RSQ_2	RSQ_3	RSQ_4	
1	C	E	0.25	2.00	40.83	14.76	10.24	7.31	6.92	
2	C	E	0.29	1.42	36.05	9.76	13.60	4.91	4.65	
3	C	E	0.30	0.91	31.93	5.38	11.48	3.54	3.50	
4	C	B	0.33	0.47	28.33	2.34	2.06	1.81	1.74	
5	C	E	0.35	0.64	29.73	3.53	6.03	2.51	2.43	
6	C	E	0.42	0.91	31.91	9.06	9.59	2.91	2.57	
7	C	E	0.46	0.78	30.86	9.77	9.88	3.26	2.80	
8	C	E	0.45	0.33	27.16	11.52	9.95	3.11	2.58	
9	C	B	0.51	0.25	26.53	9.92	9.48	2.44	1.87	
10	C	E	0.85	0.52	28.68	5.16	4.46	1.49	1.19	
11	C	E	0.96	0.50	28.53	2.47	2.55	1.68	1.50	
12	C	E	0.96	0.12	25.49	0.98	1.55	1.39	1.23	
13	S	B	1.00	-0.17	23.11	0.67	0.65	0.92	0.92	
14	S	E	1.00	-0.37	21.44	0.84	0.81	0.74	0.74	
15	S	B	1.00	-0.52	20.26	0.59	0.70	0.70	0.73	
16	S	B	1.00	-0.57	19.81	0.41	0.45	0.61	0.63	
17	S	B	1.00	-0.56	19.87	0.54	0.59	0.93	0.97	
18	C	B	1.00	-0.40	21.21	0.51	0.47	0.73	0.64	
19	C	B	1.00	-0.35	21.65	0.63	0.57	0.76	0.65	
20	C	B	1.00	-0.19	22.93	0.90	0.86	0.77	0.56	
21	C	B	1.00	-0.01	24.38	0.72	0.83	0.82	0.67	
22	C	E	0.99	0.42	27.94	1.94	1.93	1.40	1.24	
23	C	E	0.99	0.74	30.50	2.39	2.47	1.91	1.76	
24	C	E	1.00	0.49	28.44	4.26	3.36	1.68	1.35	
25	C	E	1.00	0.48	28.37	3.29	3.07	1.23	0.97	
26	C	E	1.00	0.43	27.96	0.92	0.72	0.91	0.83	
27	C	E	1.00	0.22	26.25	0.73	0.65	0.90	0.76	
28	C	B	1.00	-0.07	23.92	0.97	0.87	1.12	1.01	
29	S	B	0.99	-0.40	21.24	1.19	1.16	1.03	1.01	
30	S	B	0.99	-0.55	20.02	0.94	0.90	0.85	0.87	
31	S	B	0.99	-0.60	19.59	1.11	0.98	0.65	0.63	
32	S	B	0.99	-0.62	19.45	0.70	0.56	0.85	0.86	
33	S	B	0.99	-0.54	20.05	0.79	0.78	0.78	0.80	
34	S	B	0.99	-0.49	20.48	1.27	1.01	0.61	0.58	
35	S	B	0.99	-0.25	22.43	1.47	1.69	0.98	0.76	
36	S	E	0.99	0.16	25.81	1.89	3.02	1.32	1.17	
37	C	E	0.99	0.41	27.84	6.13	2.68	2.02	1.68	
38	C	E	0.99	0.33	27.20	2.58	2.42	1.77	1.66	
39	S	E	0.99	0.03	24.74	1.41	1.56	1.33	1.27	
40	S	E	0.99	-0.02	24.29	1.66	1.36	1.67	1.58	
41	S	E	0.99	-0.02	24.32	1.32	1.67	1.06	1.04	
42	S	E	0.99	-0.05	24.07	1.66	1.48	1.43	1.34	
43	C	E	0.99	0.13	25.52	1.13	1.07	1.08	1.01	
44	C	E	0.99	0.12	25.43	0.89	1.16	1.11	1.01	
45	C	E	0.99	0.41	27.86	1.33	1.67	1.11	1.02	
46	C	E	0.99	0.58	29.21	2.25	2.34	2.34	2.29	
47	C	B	1.00	0.15	25.70	1.54	1.56	1.33	1.20	
48	C	B	1.00	0.20	26.09	0.67	0.77	1.08	1.01	
49	H	B	1.00	0.13	25.57	1.05	1.13	1.18	1.09	
50	H	B	1.00	0.03	24.73	0.86	0.84	0.97	0.90	
51	H	E	1.00	-0.18	23.03	0.87	0.78	1.05	0.97	
52	H	E	1.00	-0.34	21.70	0.53	0.52	0.76	0.63	
53	H	B	1.00	-0.37	21.49	0.56	0.46	0.71	0.62	
54	H	B	1.00	-0.41	21.14	0.53	0.64	0.74	0.66	
55	H	E	1.00	-0.40	21.24	0.54	0.61	0.73	0.60	
56	H	B	1.00	-0.49	20.48	0.70	0.60	0.73	0.65	
57	H	B	1.00	-0.47	20.62	0.61	0.74	0.79	0.72	
58	H	B	1.00	-0.41	21.12	0.73	0.79	0.92	0.78	
59	H	E	1.00	-0.32	21.83	0.74	0.76	0.94	0.84	
60	H	B	1.00	-0.33	21.82	0.81	0.88	1.09	0.99	
61	H	B	1.00	-0.23	22.61	2.04	1.98	1.49	1.39	
62	H	E	1.00	0.14	25.58	2.72	2.83	2.66	2.46	
63	C	E	1.00	0.37	27.51	2.03	1.93	1.44	1.23	
64	C	E	1.00	0.54	28.86	3.82	2.10	2.10	1.84	
65	C	E	1.00	0.46	28.20	2.44	2.29	1.64	1.52	
66	C	B	1.00	0.14	25.62	2.14	2.03	1.35	1.21	
67	S	E	1.00	0.05	24.86	1.51	1.27	0.90	0.76	
68	S	B	1.00	-0.30	22.02	1.00	0.89	0.57	0.56	
69	S	E	1.00	-0.39	21.25	1.15	1.02	0.90	0.90	
70	S	B	1.00	-0.50	20.40	0.87	0.83	0.78	0.79	
71	S	B	1.00	-0.55	19.95	0.81	0.71	0.53	0.52	
72	S	B	1.00	-0.52	20.20	0.70	0.66	0.74	0.76	
73	C	B	1.00	-0.26	22.33	0.95	0.83	1.09	0.99	
74	H	B	1.00	-0.39	21.27	0.96	0.95	1.35	1.24	
75	H	E	0.99	-0.08	23.80	1.36	1.37	1.15	1.00	
76	H	B	1.00	-0.19	22.91	1.52	1.69	1.32	1.18	
77	H	B	1.00	-0.25	22.44	1.32	1.03	1.15	1.07	
78	H	B	1.00	-0.05	24.10	1.39	1.18	0.84	0.71	
79	C	E	0.99	0.00	24.49	1.77	2.00	1.21	1.00	
80	C	B	0.95	-0.07	23.88	1.83	1.78	1.08	0.93	
81	C	B	0.95	0.05	24.87	1.92	1.70	1.30	1.15	
82	C	E	0.93	0.22	26.25	2.27	2.19	1.32	1.09	
83	C	E	0.91	0.34	27.27	2.51	2.10	1.28	1.06	
84	C	B	0.88	0.28	26.74	3.20	1.73	1.28	0.95	
85	C	B	0.76	0.02	24.64	2.64	1.82	1.06	0.84	
86	H	E	0.75	0.28	26.78	2.50	2.11	1.20	1.06	
87	H	E	0.76	0.32	27.07	3.02	2.01	1.43	1.28	
88	H	B	0.72	0.12	25.43	3.40	1.52	1.28	1.06	
89	H	E	0.74	0.50	28.54	4.01	1.71	1.43	1.15	
90	C	E	0.75	1.00	32.60	4.52	1.73	1.82	1.52	
91	C	E	0.72	0.65	29.77	3.02	1.60	1.97	1.77	
92	C	E	0.78	0.45	28.14	2.87	2.09	1.64	1.49	
93	C	B	0.88	0.27	26.65	1.79	2.03	1.41	1.34	
94	C	E	0.90	0.18	25.94	4.07	3.79	1.49	1.27	
95	C	E	0.88	0.23	26.34	1.71	1.91	1.04	0.96	
96	C	E	0.96	0.42	27.86	2.92	2.42	1.74	1.53	
97	C	E	0.97	0.19	26.03	1.43	0.94	1.28	1.19	
98	H	E	0.96	0.17	25.87	0.97	0.97	1.14	1.01	
99	H	E	1.00	0.25	26.48	0.85	0.78	1.39	1.30	
100	H	B	1.00	-0.15	23.24	0.76	0.63	0.90	0.82	
101	H	B	1.00	-0.23	22.56	0.82	0.66	0.89	0.81	
102	H	E	0.99	-0.06	24.02	0.75	0.66	0.93	0.83	
103	H	E	1.00	-0.03	24.23	0.80	0.65	1.07	0.99	
104	H	B	0.89	-0.26	22.36	0.75	0.77	1.07	1.01	
105	H	B	1.00	-0.17	23.08	0.89	0.99	0.90	0.80	
106	H	E	0.99	0.13	25.55	1.11	1.02	1.01	0.91	
107	H	E	1.00	0.01	24.56	1.27	1.04	1.18	1.03	
108	H	B	1.00	-0.02	24.33	1.37	1.24	1.18	1.09	
109	H	B	0.93	0.28	26.79	1.44	1.34	1.60	1.47	
110	C	E	0.85	0.51	28.67	1.92	1.71	1.81	1.69	
111	C	E	0.88	0.45	28.11	1.62	2.03	2.21	2.17	
112	C	E	0.96	0.26	26.58	2.15	2.50	1.51	1.31	
113	C	E	1.00	0.09	25.20	0.80	0.87	0.94	0.82	
114	S	B	1.00	-0.25	22.42	0.99	1.02	0.72	0.70	
115	S	E	1.00	-0.22	22.67	1.06	1.09	0.98	0.94	
116	S	B	1.00	-0.37	21.42	1.10	0.90	0.97	0.94	
117	S	E	0.99	-0.36	21.51	0.84	0.85	0.88	0.89	
118	S	B	1.00	-0.31	21.95	0.86	0.94	0.76	0.72	
119	S	B	1.00	-0.11	23.56	0.86	1.01	0.94	0.81	
120	C	E	0.91	0.15	25.68	1.92	2.46	1.05	0.90	
121	C	B	0.95	0.31	27.04	2.20	2.14	1.07	0.89	
122	C	B	0.93	0.61	29.45	2.28	2.75	1.11	0.88	
123	C	E	0.90	0.89	31.70	2.99	3.10	1.44	1.19	
124	C	E	0.99	1.08	33.29	4.34	4.39	1.39	1.14	
125	C	E	0.99	0.71	30.24	2.25	2.36	1.06	0.91	
126	C	E	0.99	0.36	27.40	1.09	1.14	1.05	0.91	
127	C	E	0.99	0.14	25.64	0.93	0.80	1.16	0.99	
128	H	B	0.99	-0.01	24.40	0.98	0.99	0.77	0.68	
129	H	E	0.99	0.30	26.94	1.34	1.23	1.08	0.93	
130	H	E	0.99	0.10	25.28	1.13	0.99	1.07	0.95	
131	H	B	0.99	-0.24	22.52	0.75	0.78	0.80	0.72	
132	H	B	0.99	-0.22	22.70	1.10	1.08	1.11	0.94	
133	H	E	0.99	-0.02	24.30	1.05	0.92	0.96	0.83	
134	H	B	0.99	-0.28	22.21	0.67	0.66	0.71	0.63	
135	H	B	0.99	-0.32	21.85	0.70	0.81	0.69	0.61	
136	H	E	0.97	-0.15	23.29	1.40	1.27	1.04	0.90	
137	H	E	0.97	-0.00	24.44	1.66	1.25	1.14	0.97	
138	H	B	0.94	-0.14	23.31	2.59	1.44	1.08	0.86	
139	H	B	0.93	-0.11	23.55	1.95	1.53	1.11	0.95	
140	H	E	0.86	0.55	28.97	3.54	2.22	1.47	1.23	
141	H	E	0.82	0.85	31.41	5.03	1.76	1.56	1.20	
142	H	E	0.75	1.29	35.00	6.30	2.29	1.59	1.18	
143	C	E	0.57	1.98	40.66	8.45	5.78	4.99	4.77	


RES:   Residue number
SS:    Predicted secondary structure: C - random coil; H - alpha-helix; S - beta-strand
RSA:   Predicted solvent accessibility at 25% cutoff: E - exposed; B - buried
COV:   Threading alignment coverage defined as the number of non-gap threading alignments on 
       the residue divided by the total number of threading templates
nBF:   Predicted normalized B-factor (normalize by Z-score transformation)
rBF:   Predicted raw B-factor
RSQ_1: Predicted local quality based on LOMETS threading templates
RSQ_2: Predicted local quality based on TM-align structure alignment templates
RSQ_3: Consensus prediction of local quality based on support vector regressions
RSQ_4: Predicted local quality based on submitted decoy structures


You are requested to cite the following article when you use the ResQ server:

 Jianyi Yang and Yang zhang, ResQ: A unified algorithm for estimating B-factor and residue-specific quality 
 of protein structure prediction, submitted, (2014).