>Q9Y680 (145 residues) MPKTMHFLFRFIVFFYLWGLFTAQRQKKEESTEEVKIEVLHRPENCSKTSKKGDLLNAHY DGYLAKDGSKFYCSRTQNEGHPKWFVLGVGQVIKGLDIAMTDMCPGEKRKVVIPPSFAYG KEGYAEGKIPPDATLIFEIELYAVT |
Sequence |
20 40 60 80 100 120 140 | | | | | | | MPKTMHFLFRFIVFFYLWGLFTAQRQKKEESTEEVKIEVLHRPENCSKTSKKGDLLNAHYDGYLAKDGSKFYCSRTQNEGHPKWFVLGVGQVIKGLDIAMTDMCPGEKRKVVIPPSFAYGKEGYAEGKIPPDATLIFEIELYAVT |
Prediction | CCCCHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCSSSSSSSSCCCCCCCCCCCCSSSSSSSSSSCCCCCSSCCCCCCCCCCCSSSSSCCCCSSCHHHHHHHCCCCCCSSSSSSCCCCCCCCCCCCCCCCCCCCSSSSSSSSSSSC |
Confidence | 9850679999999999999997422377657986199999936999876899958999999998799967416665899976799937984644099998429988189999884128687899999819895499999998749 |
H:Helix; S:Strand; C:Coil | |
Sequence |
20 40 60 80 100 120 140 | | | | | | | MPKTMHFLFRFIVFFYLWGLFTAQRQKKEESTEEVKIEVLHRPENCSKTSKKGDLLNAHYDGYLAKDGSKFYCSRTQNEGHPKWFVLGVGQVIKGLDIAMTDMCPGEKRKVVIPPSFAYGKEGYAEGKIPPDATLIFEIELYAVT |
Prediction | 6344033102322333011112144574664675031322544676464155434030203020374344010036376343050403552004113400540444340302012530115544564503240202010323738 |
Values range from 0 (buried residue) to 8 (highly exposed residue) | |
Rank | PDB hit | ID1 | ID2 | Cov | Norm. Zscore | Downloadalignment | 20 40 60 80 100 120 140 | | | | | | | | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS Seq | CCCCHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCSSSSSSSSCCCCCCCCCCCCSSSSSSSSSSCCCCCSSCCCCCCCCCCCSSSSSCCCCSSCHHHHHHHCCCCCCSSSSSSCCCCCCCCCCCCCCCCCCCCSSSSSSSSSSSC MPKTMHFLFRFIVFFYLWGLFTAQRQKKEESTEEVKIEVLHRPENCSKTSKKGDLLNAHYDGYLAKDGSKFYCSRTQNEGHPKWFVLGVGQVIKGLDIAMTDMCPGEKRKVVIPPSFAYGKEGYAEGKIPPDATLIFEIELYAVT | |||||||||||||||||||
1 | 4dipA | 0.49 | 0.40 | 11.61 | 1.17 | DEthreader | -------------------MG--A--LIPE-P-EVKIEVLQKPFICHRKTKGGDLMLVHYEGYLEKDGSLFHSTHKHNNGQPIWFTLGILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEGK-GK-IPPESTLIFNIDLLEIR | |||||||||||||
2 | 4dipA | 0.50 | 0.41 | 11.80 | 2.41 | SPARKS-K | -------------------------MGALIPEPEVKIEVLQKPFICHRKTKGGDLMLVHYEGYLEKDGSLFHSTHKHNNGQPIWFTLGILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEG--KGKIPPESTLIFNIDLLEIR | |||||||||||||
3 | 1jvwA | 0.27 | 0.26 | 7.83 | 1.00 | MapAlign | --HEERMNNYRKRVGRLFMEQKAAQPDAVKLPSGLVFQRIARG-SGKRAPAIDDKCEVHYTGRLR-DGTVFDSSRE--RGKPTTFRPN--EVIKGWTEALQLMREGDRWRLFIPYDLAYGVTGG-GGMIPPYSPLEFDVELISIK | |||||||||||||
4 | 1fd9A | 0.25 | 0.23 | 7.28 | 0.69 | CEthreader | TAEFNKKADENKVKGEAFLTENKNKPGVVVLPSGLQYKVINSG--NGVKPGKSDTVTVEYTGRLI-DGTVFDSTEK--TGKPATFQVS--QVIPGWTEALQLMPAGSTWEIYVPSGLAYGPRSVG-GPIGPNETLIFKIHLISVK | |||||||||||||
5 | 4dipA | 0.50 | 0.41 | 11.80 | 2.07 | MUSTER | -------------------------MGALIPEPEVKIEVLQKPFICHRKTKGGDLMLVHYEGYLEKDGSLFHSTHKHNNGQPIWFTLGILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEG--KGKIPPESTLIFNIDLLEIR | |||||||||||||
6 | 1q6uA | 0.31 | 0.29 | 8.76 | 1.75 | HHsearch | LSDQIEQTLQKDAAKGKEYRKFAKEKGVKTSSTGLVYQVVEAGK--GEAPKDSDTVVVNYKGTLI-DGKEFDNSYT--RGEPLSFRLD--GVIPGWTEGLKNIKKGGKIKLVIPPELAYGKAGVP-G-IPPNSTLVFDVELLDVK | |||||||||||||
7 | 4dipA | 0.49 | 0.39 | 11.41 | 2.17 | FFAS-3D | --------------------------GALIPEPEVKIEVLQKPFICHRKTKGGDLMLVHYEGYLEKDGSLFHSTHKHNNGQPIWFTLGILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEGKGK--IPPESTLIFNIDLLEI- | |||||||||||||
8 | 2mphA | 0.29 | 0.29 | 8.81 | 1.25 | EigenThreader | GNIKNVAKTANKDHLVTAYNHLFETETLDEGPPKYTKSVLKKGDKTN-FPKKGDVVHCWYTGTLQDGTVFDTNIQTSAKAKPLSFKVGVGKVIRGWDEALLTMSKGEKARLEIEPEWAYGKKGQPDAKIPPNAKLTFEVELVDID | |||||||||||||
9 | 4dipA | 0.54 | 0.41 | 11.74 | 1.65 | CNFpred | ---------------------------------EVKIEVLQKPFICHRKTKGGDLMLVHYEGYLEKDGSLFHSTHKHNNGQPIWFTLGILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEGK--GKIPPESTLIFNIDLLEIR | |||||||||||||
10 | 4mspA | 0.50 | 0.39 | 11.41 | 1.17 | DEthreader | ------------------------L--IP-E-PEVKIEVLQKPFICHRKTKGGDLMLVHYEGYLEKDGSLFHSTHKHNNGQPIWFTLGILEALKGWDQGLKGMCVGEKRKLIIPPALGYGKEGKG-K-IPPESTLIFNIDLLEIR | |||||||||||||
|
|
Top 10 structural analogs in PDB (as identified by
TM-align)
|
|
Top 5 enzyme homologs in PDB
|
Template proteins with similar binding site:
|
References: | |
1. | Wei Zheng, Chengxin Zhang, Yang Li, Robin Pearce, Eric W. Bell, Yang Zhang. Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. In preparation, 2020. |