>Q9Y575 (145 residues) WNHIYEFVNHAIKAQAKYKEWLPHLLVAGFDPLILLCNSWIDSVSIDTLIFTLEFTNWKT LAPAVERMLSARASNAWILQQHIATVPSLTHLCRLEIRSSLKSERLRSDSYISQLPLPRS LHNYLLYEDVLRMYEVPELAAIQDG |
Sequence |
20 40 60 80 100 120 140 | | | | | | | WNHIYEFVNHAIKAQAKYKEWLPHLLVAGFDPLILLCNSWIDSVSIDTLIFTLEFTNWKTLAPAVERMLSARASNAWILQQHIATVPSLTHLCRLEIRSSLKSERLRSDSYISQLPLPRSLHNYLLYEDVLRMYEVPELAAIQDG |
Prediction | CCHHHHHHHHHHHHHHHHCCCCHHHHHHCCCCHHHHCHHHHHHHCCHHHHHHHHHHCCCCCCHHHHHHHHHHHHCCCCHHHHHCCCCCHHHHHHHHHHHHHCHHHCCCCHHHHHCCCCHHHHHHHHHHHHHHHHCCCCCCCCCCC |
Confidence | 9369999999998763212222899995478402202888886142289988886167767848999998621034522565337976889999999998151220452036537998799999999998765136665454679 |
H:Helix; S:Strand; C:Coil | |
Sequence |
20 40 60 80 100 120 140 | | | | | | | WNHIYEFVNHAIKAQAKYKEWLPHLLVAGFDPLILLCNSWIDSVSIDTLIFTLEFTNWKTLAPAVERMLSARASNAWILQQHIATVPSLTHLCRLEIRSSLKSERLRSDSYISQLPLPRSLHNYLLYEDVLRMYEVPELAAIQDG |
Prediction | 7631341042015226616502120032323213102441044143400300030243251254045205536754054154246332031001230253044630544410650301620340031441145261453444668 |
Values range from 0 (buried residue) to 8 (highly exposed residue) | |
Rank | PDB hit | ID1 | ID2 | Cov | Norm. Zscore | Downloadalignment | 20 40 60 80 100 120 140 | | | | | | | | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS Seq | CCHHHHHHHHHHHHHHHHCCCCHHHHHHCCCCHHHHCHHHHHHHCCHHHHHHHHHHCCCCCCHHHHHHHHHHHHCCCCHHHHHCCCCCHHHHHHHHHHHHHCHHHCCCCHHHHHCCCCHHHHHHHHHHHHHHHHCCCCCCCCCCC WNHIYEFVNHAIKAQAKYKEWLPHLLVAGFDPLILLCNSWIDSVSIDTLIFTLEFTNWKTLAPAVERMLSARASNAWILQQHIATVPSLTHLCRLEIRSSLKSERLRSDSYISQLPLPRSLHNYLLYEDVLRMYEVPELAAIQDG | |||||||||||||||||||
1 | 6c9kA | 0.10 | 0.10 | 3.59 | 0.36 | CEthreader | EIELGKKLLEAARAG--QDDEVRILMANGADVNATPLHLAAWIGHPEIVEVLLKHGADVNARDTDGWPLHLAADNHLEIVEVLLKYGADVNAQDAYGLTPLHLAADRGHLEIVEVLLKHGADVNAQDKFGKTAFDISIDNGNEDL | |||||||||||||
2 | 1s70B | 0.08 | 0.08 | 3.05 | 0.62 | EigenThreader | AVFLAACSSGLHQACIDDVDMVKFLVENGANINQPDWIPLHAAAYLDIAEYLISQGAHVGAVNTPLDIAEEEAMEELLQNEVNRQGGTALHVAAAKGLIQARYDVNIKDYHAAAHWGKEEACRILAVNKVGQTAFDVALQKKQNL | |||||||||||||
3 | 5cbnA | 0.08 | 0.08 | 2.94 | 0.64 | FFAS-3D | -DEVRILMALHLAAYWGHFEIVEVLLKYGADVNASDATLAAKWGYLGIVEVLLKYGADVNAQDKAFDISIDNGNEDLAEIL-------CKNKAQQAAFYCILHLPNLNEEQRNAFIQSLKSANLLAEAKKLNDAQAPK------- | |||||||||||||
4 | 6w2rA | 0.10 | 0.10 | 3.61 | 0.76 | SPARKS-K | KTAVKLALDVALRVAQEAAKAIDEAAEVVVRIAEESNNSDALEQALRVLEEIAKAVLKSEKAKKAVKLVQEAYKAAQRAIEAAKRTGTAIKLAKLAARAALEVIKPKSEEVNEALKIVKAIQEAVESLREAEESGDPEKREKARE | |||||||||||||
5 | 3zngA | 0.23 | 0.19 | 5.86 | 0.95 | CNFpred | --HLGTPLYLACENQ--QRACVKKLLESGADVNQGPLHAVARTASEELACLLMDFGADTQAKNRPVELVPPE-SPLAQLFLEREGPPSLMQLCRLRIRKCFGIQQH---HKITKLVLPEDLKQFLLHL----------------- | |||||||||||||
6 | 6jr6A3 | 0.07 | 0.07 | 2.79 | 1.00 | DEthreader | NSDQPCYGDSGNGSNVLDGWKQMANQIPVGTCDISGY-CGDIKYMAELYVRWLQFGVLSRAHHAVE--PWKFGTEAENISRKSIELKYKLFPYLYTYAREAHTGLPRALLLEYP----LVGKEL-LVAPVVTKDVYLP--EGEGE | |||||||||||||
7 | 6c9kA | 0.08 | 0.07 | 2.72 | 0.63 | MapAlign | RVIEIELGKKLLEAARAGDDEVRILMANGADVNATPLHLAAWIGHPEIVEVLLKHADVNARDGWPLHLAADNG--HLEIVEVLLKYHLAADRGLEIVEVLLKHGAVNAKTAFDISNGNEDLAEILQ------------------- | |||||||||||||
8 | 5cwpA2 | 0.12 | 0.10 | 3.39 | 0.54 | MUSTER | SSDVNEALKLIVEAIEAAVRALEAAERTG-DPEVRELARELVRLAVEAAEEVQRNPSSEEVNEALKKIVKAIQEVESLREAEESGDPEKREKARERVREAVEEEVQRDPSGWLE------------------------------- | |||||||||||||
9 | 6sa8A | 0.10 | 0.08 | 3.10 | 0.73 | HHsearch | DERGHTPLHLAAYTG--HLEIVEVLLKNGAGVNATDVILAAMWGHLEIVEVLLKNGADPKAQDERGHTPLHLAATGHLEILKNTIGTPLHLAAMCEIVEVLLKNGAD-VNAQDKFGKTEDIAEVLQKAA---------------- | |||||||||||||
10 | 5cbnA | 0.08 | 0.08 | 3.02 | 0.33 | CEthreader | -SDLGKKLLEAAHAG--QDDEVRILMANGADVNAMPLHLAAYWGHFEIVEVLLKYGADVNASDATGDTPLHLAAKYLGIVEVLLKYGADVNAQDKFGKTAFDISIDNGNEDLAEI-LCKNKAQQAAFYCILHLPNLNEEQRNAFI | |||||||||||||
|
|
Top 10 structural analogs in PDB (as identified by
TM-align)
|
|
Top 5 enzyme homologs in PDB
|
Template proteins with similar binding site:
|
References: | |
1. | Wei Zheng, Chengxin Zhang, Yang Li, Robin Pearce, Eric W. Bell, Yang Zhang. Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. In preparation, 2020. |