>Q9BUK6 (145 residues) TAGAIIPFPLAPGQSLPDSLMQFGGATPWTPLSACGEPSGTRCFAQSVVLRGIDRACHTS QLTPGTPPPSALHACTTGEEILAQYLQQQQPGVMSSSHLLLTPCRVAPPYPHLFSSCSPP GMVLDGSPKGAAVESIPVFGALCSS |
Sequence |
20 40 60 80 100 120 140 | | | | | | | TAGAIIPFPLAPGQSLPDSLMQFGGATPWTPLSACGEPSGTRCFAQSVVLRGIDRACHTSQLTPGTPPPSALHACTTGEEILAQYLQQQQPGVMSSSHLLLTPCRVAPPYPHLFSSCSPPGMVLDGSPKGAAVESIPVFGALCSS |
Prediction | CCCSCCCCCCCCCCCHHHHHHHHCCCCCCCCCCCCCCCCCCCSSSSSSSSSCCCHHHCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHCCCCCHHHHHHCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHCC |
Confidence | 9850124687999866999986189988620478887889815889999618897772489998887888221489999999999986377741154331245678999832225444568755899888863135677765139 |
H:Helix; S:Strand; C:Coil | |
Sequence |
20 40 60 80 100 120 140 | | | | | | | TAGAIIPFPLAPGQSLPDSLMQFGGATPWTPLSACGEPSGTRCFAQSVVLRGIDRACHTSQLTPGTPPPSALHACTTGEEILAQYLQQQQPGVMSSSHLLLTPCRVAPPYPHLFSSCSPPGMVLDGSPKGAAVESIPVFGALCSS |
Prediction | 7341302121447420040036277433132013345656431001100023136732544465656433313416304300320143334313221321444161432014002533475132544655640421200232358 |
Values range from 0 (buried residue) to 8 (highly exposed residue) | |
Rank | PDB hit | ID1 | ID2 | Cov | Norm. Zscore | Downloadalignment | 20 40 60 80 100 120 140 | | | | | | | | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS Seq | CCCSCCCCCCCCCCCHHHHHHHHCCCCCCCCCCCCCCCCCCCSSSSSSSSSCCCHHHCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHCCCCCHHHHHHCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHCC TAGAIIPFPLAPGQSLPDSLMQFGGATPWTPLSACGEPSGTRCFAQSVVLRGIDRACHTSQLTPGTPPPSALHACTTGEEILAQYLQQQQPGVMSSSHLLLTPCRVAPPYPHLFSSCSPPGMVLDGSPKGAAVESIPVFGALCSS | |||||||||||||||||||
1 | 3vbbA | 0.09 | 0.08 | 3.12 | 0.49 | CEthreader | TSEQPIAALHRD-----EWLRPEDLPIKYAGLSTCIFRVHQFEKIEQFVYSSPHDNKSWEMFEEIVNIVSGSLNHAASKKLDLEAWFPGSGAFRELVSCSNCTDYQA------------RRLRIRYGQTMDKVEFVHMLNATMCA | |||||||||||||
2 | 4jgaA | 0.12 | 0.12 | 4.14 | 0.75 | EigenThreader | GLGLVTPVGLN----VNSSWKNIVDGVSGAAATEAVEDSGWLTGLILGSGIGGLYQENNGKVSPFGFSGPNQTAVTACSTGAHAIGDAMYADVMIAGGAEAPVTFVAARALCTKYNDNPKKASRPWDKDRSGFVMGEGAGVVVLE | |||||||||||||
3 | 2zkr51 | 0.13 | 0.08 | 2.86 | 0.37 | FFAS-3D | -----------ADQEIENAVSRA--------LEDAPERNFRETVDLAVNLRDLDLNDPSNRVDESVVLPAGTGQVQSAENIADNILHADLEKGPLNIDTVYVKTTMG---PAM-------------------------------- | |||||||||||||
4 | 3da5A | 0.11 | 0.09 | 3.26 | 0.86 | SPARKS-K | -KKTLWELVGRNKDALRDFLKEHRGTILLRDIASEHKV--------------VYKPIFKRYNG---DPDLIEDNSNDVEHWYDYHLERYWNTPELKKEFYKKFGPVDLNQPIILAKPL------RQHNRGDLVHLLPQFVVPVYN | |||||||||||||
5 | 3j8xA | 0.12 | 0.06 | 1.94 | 0.69 | CNFpred | PLATYAPVISA-QLSVAEITNACF---EPANQMVKCDPRHGKYMACCLLYRGDVV--------------------KDVNAAIATIKTKR-------------------------------------------------------- | |||||||||||||
6 | 4e1jA | 0.07 | 0.06 | 2.34 | 0.83 | DEthreader | GYILAIDQGTTQVE---HDPEEIWQTVVTVKAIKSGITA-NDIAA-IGITN-QR-ETVVVLLNVKGAQR---LCFGTIDTFLIWRLTGGTDPAIPILGVAQAAGQ---------YGTGCF-FGA-VQ-RTDGGLETTAVAAGRAV | |||||||||||||
7 | 2pffA3 | 0.04 | 0.03 | 1.88 | 0.68 | MapAlign | GFAEVGPISIISQVDPITLFVLVSVVEAFIAPYEMYKYVHVSEVGNCSGSGMGGVSAEMSANMLLISSSGPKT-PVGAVESVDIGVETILKARICIVGGYDDFATSNTLEEFEHEMSRPATTTR------NGFMEAQGAGIQIIM | |||||||||||||
8 | 3da5A | 0.13 | 0.11 | 3.81 | 0.59 | MUSTER | -KKTLWELVGRNKDALRDFLKEHRGTILLRDIASEHK----------VVYKPIFKRYNGDP-------DLIEDNSNDVEHWYDYHLERYWNTPELKKEFYKKFGPVDLNQPIILAK------PLRQHNRGDLVHLLPQFVVPVYN | |||||||||||||
9 | 2pffB | 0.14 | 0.13 | 4.47 | 0.58 | HHsearch | KGATGHSQGL------VTAVAIAE-TDSWESFFVSVTVLGVRCY-EAYPNTSLPPSILEDSLENEGVPSPMLSISNLTQEQVQDYVNKTNPKAPSGLDQSRIPFSRKLKFSNRFLPAS--PFHSHLLVSFNKDIQIPVYDTFDGS | |||||||||||||
10 | 6dx8A | 0.08 | 0.08 | 2.97 | 0.49 | CEthreader | MCTYMGASLDVRQNIAVREVPKLAKEAALKAIKEWGQPKSKITHLVFGTTSGVDMPGADFQLLKLLGLRPNVKRIMLVTRVAKDLAENNPGARVLVACSEVTAVTFRAPSETHLDGLVG------------AALFGDGAAALIIG | |||||||||||||
|
|
Top 10 structural analogs in PDB (as identified by
TM-align)
|
|
Top 5 enzyme homologs in PDB
|
Template proteins with similar binding site:
|
References: | |
1. | Wei Zheng, Chengxin Zhang, Yang Li, Robin Pearce, Eric W. Bell, Yang Zhang. Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. In preparation, 2020. |