>O94906 (145 residues) TYENARKVLNKARENIPTDRHIWITAAKLEEANGNTQMVEKIIDRAITSLRANGVEINRE QWIQDAEECDRAGSVATCQAVMRAVIGIGIEEEDRKHTWMEDADSCVAHNALECARAIYA YALQVFPSKKSVWLRAAYFEKNHGT |
Sequence |
20 40 60 80 100 120 140 | | | | | | | TYENARKVLNKARENIPTDRHIWITAAKLEEANGNTQMVEKIIDRAITSLRANGVEINREQWIQDAEECDRAGSVATCQAVMRAVIGIGIEEEDRKHTWMEDADSCVAHNALECARAIYAYALQVFPSKKSVWLRAAYFEKNHGT |
Prediction | CHHHHHHHHHHHHHHCCCCHHHHHHHHHHHHHHCCHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHHHCCHHHHHHHHHHHHHHCCCHHHHHHHHHHHHHHHHHHCCHHHHHHHHHHHHHHCCCCHHHHHHHHHHHHHHCC |
Confidence | 8899999999999978998799999999999959999999999999998456277556999999999999809989999999999982898156899999999999990987899999999999789985999999999998696 |
H:Helix; S:Strand; C:Coil | |
Sequence |
20 40 60 80 100 120 140 | | | | | | | TYENARKVLNKARENIPTDRHIWITAAKLEEANGNTQMVEKIIDRAITSLRANGVEINREQWIQDAEECDRAGSVATCQAVMRAVIGIGIEEEDRKHTWMEDADSCVAHNALECARAIYAYALQVFPSKKSVWLRAAYFEKNHGT |
Prediction | 7475035104401641474340012004102644446304400430063057562434264015303402656226202300330173426664225002400530374732520110043007414743500420051057458 |
Values range from 0 (buried residue) to 8 (highly exposed residue) | |
Rank | PDB hit | ID1 | ID2 | Cov | Norm. Zscore | Downloadalignment | 20 40 60 80 100 120 140 | | | | | | | | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS Seq | CHHHHHHHHHHHHHHCCCCHHHHHHHHHHHHHHCCHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHHHCCHHHHHHHHHHHHHHCCCHHHHHHHHHHHHHHHHHHCCHHHHHHHHHHHHHHCCCCHHHHHHHHHHHHHHCC TYENARKVLNKARENIPTDRHIWITAAKLEEANGNTQMVEKIIDRAITSLRANGVEINREQWIQDAEECDRAGSVATCQAVMRAVIGIGIEEEDRKHTWMEDADSCVAHNALECARAIYAYALQVFPSKKSVWLRAAYFEKNHGT | |||||||||||||||||||
1 | 3sf4A | 0.06 | 0.06 | 2.67 | 1.50 | DEthreader | NFRDAVIAHEQRLLIAKKARRAYSNLGNAYIFLGEFETASEYYKKTLLLARQLKDRAVAQSCYSLGNTYTLLQDYEKAIDYHLKHLA-IAQDRIGGRACWSLGNAYTALGNHDQAMHFAEKHLEISRKELTARLNLSDLQMVLGL | |||||||||||||
2 | 4ui9C3 | 0.09 | 0.08 | 3.18 | 1.33 | SPARKS-K | MKSELSYLAHNLCEIDKYRVETCCVIGNYYSLRSQHEKAALYFQRALKLNPR-----YLGAWTLMGHEYMEMKNTSAAIQAYRHAIEVN---KRDYRAWYGLGQTYEILKMPFYCLYYYRRAHQLRPNDSRMLVALGECYEKLNQ | |||||||||||||
3 | 3sf4A | 0.07 | 0.07 | 2.86 | 0.53 | MapAlign | -YAKALEYHHHDLTLAQLEAKASGNLGNTLKVLGNFDEAIVCCQRHLDISRELNDKGEARALYNLGNVYHAKGALQAAVDFYEENLSLVGDRAAQGRAFGNLGNTHYLLGNFRDAVIAHEQRLLIAAAERRAYSNLGNAYIFLGE | |||||||||||||
4 | 4a1sA | 0.08 | 0.08 | 3.05 | 0.33 | CEthreader | DYNKAMQYHKHDLTLALGEAKSSGNLGNTLKVMGRFDEAAICCERHLTLARQLGDRSEGRALYNLGNVYHAKGKLTRAVEFYQENLKLMRDRGAQGRACGNLGNTYYLLGDFQAAIEHHQERLRIAREFRRANSNLGNSHIFLGQ | |||||||||||||
5 | 5o9zG | 1.00 | 1.00 | 28.00 | 1.05 | MUSTER | TYENARKVLNKARENIPTDRHIWITAAKLEEANGNTQMVEKIIDRAITSLRANGVEINREQWIQDAEECDRAGSVATCQAVMRAVIGIGIEEEDRKHTWMEDADSCVAHNALECARAIYAYALQVFPSKKSVWLRAAYFEKNHGT | |||||||||||||
6 | 3pe3A | 0.16 | 0.15 | 5.04 | 0.59 | HHsearch | NIEEAVRLYRKALEVFPEFAAAHSNLASVLQQQGKLQEALMHYKEAIRISPT-----FADAYSNMGNTLKEMQDVQGALQCYTRAIQIN---PAFADAHSNLASIHKDSGNIPEAIASYRTALKLKPDFPDAYCNLAHCLQIVCD | |||||||||||||
7 | 5nrlJ4 | 0.12 | 0.12 | 4.11 | 1.79 | FFAS-3D | NEEAIKFLNERCLKSFPICHKFFLQLGQIYHSMGNIEMSRETYLSGTRLVPNC-----PLLWVSLSKIDEIDKNPVRARSILDRGLLK---NPDDVLFYIAKIQMEIRLGNLDQAELLVTQALQKFPSNALLWVEQIKLFKHGNK | |||||||||||||
8 | 4b4tQ | 0.06 | 0.06 | 2.68 | 0.57 | EigenThreader | DQIFVCEKSIEFAKREFLKHSLSIKLATLHYQKKQYKDSLALINDLLREFKKLDDPSLVDVHLLESKVYHKLRNLAKSKASLTAARTAYCPTQTVAELDLMSGILHCEDKDYKTAFSYFFESFESYHNLTQVLKYMLLSKIMLNL | |||||||||||||
9 | 5lfmA | 0.10 | 0.10 | 3.55 | 1.04 | CNFpred | SPEEALRFLKLWARHEKNDPEPLYQMGIALANLGDYQRAVTVFDKVLKLRPN-----HFMASYRKGAVLLKIKQYKLALPVLEAVVAAAP---ADARAYYLLGLAYDGDEQLEKGIEAMQKAVDLDPEEIKYHQHLGFMNVRKDD | |||||||||||||
10 | 4a1sA | 0.07 | 0.07 | 2.86 | 1.50 | DEthreader | ELTRAVEFYQENLKLMDGAGRACGNLGNTYYLLGDFQAAIEHHQERLRIAREFGDRAERRANSNLGNSHIFLGQFEDAAEHYKRTLA-LAVGREEAQSCYSLGNTYTLLHEFNTAIEYHNRHLAIAQREARACWSLGNAHSAIGG | |||||||||||||
|
|
Top 10 structural analogs in PDB (as identified by
TM-align)
|
|
Top 5 enzyme homologs in PDB
|
Template proteins with similar binding site:
|
References: | |
1. | Wei Zheng, Chengxin Zhang, Yang Li, Robin Pearce, Eric W. Bell, Yang Zhang. Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. In preparation, 2020. |