>A6NM43 (145 residues) LAISGKLCGQMAAVLSGARVALFACPFGPAHPNAPATACLSSPADLAQFSKGSDQLLEKQ VGQLAAAGINVAVVLGEVDEETLTLADKYGIVVIQARSRMEIIYLSEVLDTPLLPRLLPP QRPGKCQRVYRQELGDGLAVVFEWE |
Sequence |
20 40 60 80 100 120 140 | | | | | | | LAISGKLCGQMAAVLSGARVALFACPFGPAHPNAPATACLSSPADLAQFSKGSDQLLEKQVGQLAAAGINVAVVLGEVDEETLTLADKYGIVVIQARSRMEIIYLSEVLDTPLLPRLLPPQRPGKCQRVYRQELGDGLAVVFEWE |
Prediction | CCCCCCCCCCCCCSCCCCSSSSSSCCCCCCCCCCCCSSSSCCHHHHHHHHHHHHHHHHHHHHHHHHHCCCSSSSCCCCCHHHHHHHHHHCCSSSSSCCHHHHHHHHHHHCCSSSCCCCCHHHCCSSSSSSSSSSCCCSSSSSSSC |
Confidence | 9506788788872104976999938888776536727996799999999999999999999999992998999789889899999999099499944889999999995997632569954681653899999869079999839 |
H:Helix; S:Strand; C:Coil | |
Sequence |
20 40 60 80 100 120 140 | | | | | | | LAISGKLCGQMAAVLSGARVALFACPFGPAHPNAPATACLSSPADLAQFSKGSDQLLEKQVGQLAAAGINVAVVLGEVDEETLTLADKYGIVVIQARSRMEIIYLSEVLDTPLLPRLLPPQRPGKCQRVYRQELGDGLAVVFEWE |
Prediction | 6324463545045415502000000304274463625040533730550263026203610530271404000133402420231046340100221565204200521604123414437311404302145246530100358 |
Values range from 0 (buried residue) to 8 (highly exposed residue) | |
Rank | PDB hit | ID1 | ID2 | Cov | Norm. Zscore | Downloadalignment | 20 40 60 80 100 120 140 | | | | | | | | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS Seq | CCCCCCCCCCCCCSCCCCSSSSSSCCCCCCCCCCCCSSSSCCHHHHHHHHHHHHHHHHHHHHHHHHHCCCSSSSCCCCCHHHHHHHHHHCCSSSSSCCHHHHHHHHHHHCCSSSCCCCCHHHCCSSSSSSSSSSCCCSSSSSSSC LAISGKLCGQMAAVLSGARVALFACPFGPAHPNAPATACLSSPADLAQFSKGSDQLLEKQVGQLAAAGINVAVVLGEVDEETLTLADKYGIVVIQARSRMEIIYLSEVLDTPLLPRLLPPQRPGKCQRVYRQELGDGLAVVFEWE | |||||||||||||||||||
1 | 1q3rA | 0.19 | 0.19 | 6.03 | 1.50 | DEthreader | VVIDKEVVPRMPKRVENAKIALINEALEVKKTETDAKINITSPDQLMSFLEQEEKMLKDMVDHIAQTGANVVFVQKGIDDLAQHYLAKYGIMAVRRVKKSDMEKLAKATGAKIVTNVDLTEDLGYAEVVEERKLAGENMIFVEGC | |||||||||||||
2 | 1q3rA1 | 0.19 | 0.19 | 6.21 | 2.42 | SPARKS-K | VVIDKEVHPRMPKRVENAKIALINEALEVKKTETDAKINITSPDQLMSFLEQEEKMLKDMVDHIAQTGANVVFVQKGIDDLAQHYLAKYGIMAVRRVKKSDMEKLAKATGAKIVTNVKTPEDLGYAEVVEERKLAGENMIFVEG- | |||||||||||||
3 | 1q3rA | 0.20 | 0.20 | 6.40 | 0.97 | MapAlign | VVIDKEVVHRMPKRVENAKIALINEALEVKKTETDAKINITSPDQLMSFLEQEEKMLKDMVDHIAQTGANVVFVQKGIDDLAQHYLAKYGIMAVRRVKKSDMEKLAKATGAKIVTNVLTPEDLGYAEVVEERKLAGENMIFVEGC | |||||||||||||
4 | 1q3rA | 0.19 | 0.19 | 6.03 | 0.67 | CEthreader | VVIDKEVVHRMPKRVENAKIALINEALEVKKTETDAKINITSPDQLMSFLEQEEKMLKDMVDHIAQTGANVVFVQKGIDDLAQHYLAKYGIMAVRRVKKSDMEKLAKATGAKIVTNVKDLEDLGYAEVVEERKLAGENMIFVEGC | |||||||||||||
5 | 1q3rA1 | 0.19 | 0.19 | 6.21 | 2.35 | MUSTER | VVIDKEVHPRMPKRVENAKIALINEALEVKKTETDAKINITSPDQLMSFLEQEEKMLKDMVDHIAQTGANVVFVQKGIDDLAQHYLAKYGIMAVRRVKKSDMEKLAKATGAKIVTNVKTPEDLGYAEVVEERKLAGENMIFVEG- | |||||||||||||
6 | 7lumJ1 | 0.30 | 0.30 | 9.00 | 1.69 | HHsearch | MVFKKET-EGDVTSVKDAKIAVYSCPFDGMITETKGTVLIKTAEELMNFSKGEENLMDAQVKAIADTGANVVVTGGKVADMALHYANKYNIMLVRLNSKWDLRRLCKTVGATALPRLTVLEEMGHCDSVYLSEVGDTQVVVFKHE | |||||||||||||
7 | 7lumJ1 | 0.30 | 0.30 | 9.00 | 2.24 | FFAS-3D | MVFKKET-EGDVTSVKDAKIAVYSCPFDGMITETKGTVLIKTAEELMNFSKGEENLMDAQVKAIADTGANVVVTGGKVADMALHYANKYNIMLVRLNSKWDLRRLCKTVGATALPRLPVLEEMGHCDSVYLSEVGDTQVVVFKHE | |||||||||||||
8 | 7lumN2 | 0.14 | 0.14 | 4.91 | 1.10 | EigenThreader | LVLTQKVSNSGITRVEKAKIGLIQFCLSAPKTDMDNQIVVSDYAQMDRVLREERAYILNLVKQIKKTGCNVLLIQDALSDLALHFLNKMKIMVIKDIEREDIEFICKTIGTKPVAHIFTADMLGSAELAEEVNLNGSGKLLKICA | |||||||||||||
9 | 1e0rB | 0.15 | 0.15 | 5.10 | 1.68 | CNFpred | IIVDKEVHPGMPDVVKDAKIALLDAPLEIKKPEFDTNLRIEDPSMIQKFLAQEENMLREMVDKIKSVGANVVITQKGIDDMAQHYLSRAGIYAVRRVKKSDMDKLAKATGASIVSTIISSSDLGTAERVEQVKVGEDYMTFVTGS | |||||||||||||
10 | 7lumH | 0.08 | 0.08 | 3.23 | 1.50 | DEthreader | VMINKDVTHRMRRYIKNPRIVLLDSSLEYKKGESQTDIEITREEDFTRILQMEEEYIQQLCEDIIQLKPDVVITEKGISDLAQHYLMRANITAIRRVRKTDNNRIARACGARIVSRPELRDDVGTAGLLEIKKIGDEYFTFITDC | |||||||||||||
|
|
Top 10 structural analogs in PDB (as identified by
TM-align)
|
|
Top 5 enzyme homologs in PDB
|
Template proteins with similar binding site:
|
References: | |
1. | Wei Zheng, Chengxin Zhang, Yang Li, Robin Pearce, Eric W. Bell, Yang Zhang. Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. In preparation, 2020. |